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Abstract

This thesis presents the first steps of a design study on the robust hopping and balancing
robot Skippy. The purpose of the overall design study is to challenge a new design approach
for robots with high physical performance. This approach comprises an iterative study of
machine (physical system) and behaviour (action strategy) co-design. Skippy is maximally
simple in that it has only two actuators to control itself in 3D, and it is to be made from
COTS components. It should be able to hop up to heights of 4 m and in addition be able to
balance, do acrobatic manoeuvres and survive its crashes.

The goal of this thesis is to design a realistic action strategy and mechanism for Skippy in 2D
to hop up to 4 m that is compliant with Skippy’s required additional abilities and physical
limitations. In 2D, Skippy only requires one actuator.

A study that uses the new design approach is presented in this thesis. The initial model of
Skippy assumes a perfect actuator and simplified transmissions. The thesis proceeds step-
by-step to a more realistic model. The physical system is designed to consist of linkage
mechanisms and two non-linear passive elastic elements. The action strategy is designed such
that Skippy acts in saturation. Saturation is determined by various physical limits such as
the limited nut velocity of the driveline’s ball screw and electrical limitations of the motor’s
armature. The system’s behaviour is improved by a redesign of the physical system that
moves the cause of the saturation, which increases the mechanical power output of the motor.
This redesign includes tuning of inertial, dimensional and stiffness parameters. It is shown
that Skippy is able to reach its target height while having basic control over lift-off momenta,
which is required for performing acrobatic manoeuvres. In addition, Skippy’s balancing per-
formance has been investigated. By adjusting the inertial and dimensional parameters that
favour balance, the jumping height is reduced to 3.8 m. This suggests that it is important
to take additional abilities, like balancing, at an early stage into consideration for design
decisions of the iterative design process.

Step-by-step introduction and alteration of parts and their parameters in alternation with
restrictions and secondary requirements have allowed for well-understood system behaviour
and have built towards a more realistic system that works.
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Chapter 1

Introduction

This thesis presents an iterative work of machine and behaviour co-design that is the first step
towards the realization of the yet theoretical robot Skippy. The project’s overall purpose is to
contribute to the legged robotics community by showing how to design and control robots with
new levels of energetic and athletic motor skills that exceed the motor skills of any robot at the
present time, and that even slightly outperform able-bodied humans. In reaching this overall
goal, a new design approach is pursued, which comprises an iterative study of machine and
behaviour co-design. With only two actuators, Skippy is to be able to perform a huge variety
of powerful and athletic motions that have not been accomplished before. The physical design
process in combination with the motion action strategy are exploited to its fullest to approach
the limits of what is physically possible with commercial off-the-shelf (COTS) components.
Key throughout the project is keeping the system as simple as possible and taking little steps
at a time that permit no deficiency of the understanding of underlying system behaviour
throughout the iterative design process. The idea behind Skippy and the design study as a
whole are a response to the problems of poor physical performance faced in robotics today.

1-1 Problems in legged robotics

Research on legged robots has a variety of purposes. For one, legged robots are employ-
able for tasks where wheeled robots are not or less applicable. The principle that legged
machines have a variety of advantages over wheeled machines is well established; this axiom
is supported by nature itself: galloping cheetahs, clambering mountain goats and acrobatic
monkeys. Direct applications for legged robots would include extraterrestrial and Arctic ex-
ploration (Yoshida and Wilcox, 2008), jungly and rocky transportation (Buehler et al., 2005)
and industry (Billingsley et al., 2008) and hardly passable or hazardous search and rescue
environments (Murphy et al., 2008; Saranli et al., 2001). A secondary (more indirect) reason
for studying legged robotics is a biomedical one. Legged robotics research is in many cases
inspired by nature with the purpose of improving our medical understanding of humans and
animals. Obtained knowledge is used for building or improving exoskeletons, prostheses and
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2 Introduction

orthoses and rehabilitation (de Boer, 2012; Karssen, 2013). Finally, legged—of which mainly
humanoid—robots do well in entertainment, which consists of many big industries (theme
parks, movies, commercials) (Kemp et al., 2008). Nonetheless, very few autonomous legged
robots have yet been built that are successfully applied in any of these fields.

We can analyse some of the problems in legged robotics by making a distinction between
versatility, energy efficiency and robustness (de Boer, 2012). Robustness can furthermore be
devided in behavioural robustness and physical robustness, both related to the survivability of
the robot. By behavioural robustness is meant the ability of robots to cope with disturbances
from the environment, also known as disturbance rejection (Hobbelen and Wisse, 2007).
Physical robustness refers to physical fragility, the ability of the robot to physically survive
impacts with the environment, i.e. without breaking components. Where animals excel in
all three versatility, energy efficiency and robustness, no robot has yet been built that excels
in more than one. We believe that this is partly due to over-complication and neglect of the
importance of the physical design.

Most prominent robots, such as Honda’s commercial ASIMO (Hirose and Masato, 2007),
focus on versatility and have gained popularity for their wide variety of actions: from walking
stairs, to running, to unscrewing bottles and serving food, most of which are limited to static
balancing. These complex systems are often very bulky and have many actuators. The
projects are big and expensive. Physical design and control are taken apart and the robots as
a whole, although ingenious and appealing to one’s imagination, are no longer comprehensible
nor efficient. Little is required to bring the robots out of balance and a single impact could
break it. We generally seem to face problems related to robustness in large robots, not only
in stiff robots like ASIMO. Even though designed to be more bionic and behaviourally robust,
complex robots such as TU Delft’s TUlip, Boston Dynamics’ PETman and IIT’s HyQ are
still required to be carried by a harness.

A branch of robotics that does take into account the importance of physical behaviour, is
one that bases its studies on passive dynamic modelling, such as passive dynamic walking
(McGeer, 1990) or spring-loaded inverted pendula (Schwind and Koditschek, 1997; Seyfarth
et al., 2002). Design of simple robots from a physical point of view that takes into account the
robot’s natural dynamics has led to very cheap, understandable, and energy-efficient walking
machines (Collins et al., 2005), such as Cornell’s Ranger (Karssen, 2007). However, these
limited and fragile robots have shown little to no practical use, as they are able to perform
only one particular action (such as walking) under specific guarded conditions. The robots
lack both versatility and robustness. Initially, physical design had its primary focus on energy
efficiency. Over the years, the focus has slightly been shifting towards behavioural robustness,
such as in TU Delft’s Phides where non-linear parallel springs have been used to improve
disturbance rejection (Karssen, 2013). The problem of robustness has been addressed by
other roboticists. ATRIAS, a relatively new robot, is built with the aim of addressing both
robustness and energy efficiency (Grimes and Hurst, 2012). However, no results have yet been
published that live up to the objective of being fully autonomous.

Overall, we find very few successful legged robots that are both reasonably versatile and
robust, such that they are sufficiently capable of operating in full autonomy. One of the
legged robots that is still by many considered as most successful is Raibert’s original work
(Raibert, 1986) from back in the 1980s. His work is still cited by many, and progress in
the development of legged robots is slow (Silva, 2007). A few more recent successful works
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1-2 Introducing Skippy 3

include various robots from Boston Dynamics, such as the tethered quadruped Cheetah and
the quadrupeds Big Dog and Spot (Boston Dynamics, 2015). The latter two are extremely
powerful but also very heavy and energy inefficient, requiring heavy combustion engines to
operate.

1-2 Introducing Skippy

The desire to build a robot that is both robust and versatile, in combination with the observa-
tion of problems related to over-complication and neglect of the importance of physical design,
lay the foundations for a new robot named Skippy, introduced by Featherstone (Featherstone,
2014). Skippy is an exceptionally athletic but very simple hopping and balancing robot, and
is designed to address the following:

• Complexity Skippy is maximally simple in that it only has two actuators, which is
the minimum number of actuators required to achieve 3D balancing and hopping (Azad,
2014). The reduced amount of actuators reduces cost and increases reliability. More
importantly, a robot this simple can be designed in greater detail and optimized to a
greater degree than complex multi-actuated humanoids. Furthermore, Skippy consists
of only COTS components, which contributes to the simplicity of the robot.
• Performance Skippy is challenged with a wide variety of required activities, from

physically most demanding activities to delicate balancing, and as such reflect the desire
for versatility and performance. Skippy should be able to make high powerful hops up
to a height of 4 m[i] while doing athletic manoeuvres, including somersaults and twists.
• Robustness & Safety It is observed that legged robotics is mainly dominated by

risk management. Many robots are fragile, dangerous and prone to self-destruction due
to their fragile design and high mass. Skippy is to be both behaviourally and physically
robust. It should be lightweight; with a target mass of only 2 kg, it should not be
harmful to the environment and it allows for designs that enable Skippy to survive its
own crashes. After a crash, Skippy should be capable of standing up autonomously. It
is to be able to operate in full autonomy, implying that it is also not to be allowed to
be tethered or mounted to an external harness.

Comparisons

Note that many hopping robots have already been developed. Raibert’s hopping machines
(Raibert, 1986) are most notable as they are relatively simple hopping and balancing ma-
chines. Skippy uses only two actuators, for which it is fundamentally different from Raibert’s
3D hopper, which used three actuators. Some of Raibert’s hoppers make somersaults, but
do not jump higher than half a meter (measured from the centre of mass (CoM)). Raibert’s
original 3D hopper reached a top speed of 2.2 m s−1 and his biped reached a top speed of
4.3 m s−1. Skippy has to reach a vertical velocity of approximately

√
2× 9.81× 4 ≈ 9 m s−1

[i]The physical ability of a system with an estimated weight of 2 kg to hop 4 m high is the result of a few lines
of back-of-the-envelope calculations that assume mechanical energy storage and near-optimal energy flow. This
is further elucidated in section 2-1-2. Together with other non-trivial requirements, this property highlights
the necessity of paying attention to the physical behaviour of Skippy during the design project.
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4 Introduction

to jump up to 4 m. Festo’s Bionic Kangaroo can jump up to 0.4 m (Festo, 2014). Compared
to Skippy’s 4 m high hop, the energy-to-weight ratio differs a factor of 4/0.4 = 10. To jump
up to a height of 4 m, Skippy has to be capable of accelerating its mass up to 9 g (see sec-
tion 2-1-3), which is equivalent to carrying nine times its own mass. The strong quadrupedal
robots from Boston Dynamics are not capable of carrying more than once their own mass.

A few robots exist that arguably outperform the dynamic capabilities of Skippy. Boston
Dynamics’ SandFlea is capable of hopping up to 8 m, but is only able to do this a few
times[ii] as it makes use of a compressed gas cylinder to make its hops (Boston Dynamics,
2012). Moreover, it is a wheeled robot. Boston Dynamics’ quadrupedal Cheetah has been
measured to reach velocities of 13 m s−1. However, it is tethered and its (horizontal) velocity
is the result of a long lasting horizontal acceleration, whereas Skippy has to accelerate to a
(vertical) velocity of 9 m s−1 in a tenth of a second[iii].

1-3 Goal

At present, Skippy is merely an idea with some underlying theories that support the physical
possibility of the requirements stated. The execution of the idea and its theories are yet to
be carried out. The goal of this thesis is to design a realistic action strategy and mechanism
for Skippy to hop up to 4 m that is compliant with Skippy’s required additional abilities and
limitations. These include balancing abilities, controlling lift-off momenta and actuator and
driveline limitations.

1-4 Approach

Because the requirements are so extreme and the problem so broad, it is not practical to
pick an existing physical device and design an action strategy accordingly. The requirements
demand physical system properties that are compliant with the plan of action, such as the
requirement of mechanical energy storage to make a 4 m high hop with a system of 2 kg.
The idea of machine and behaviour co-design is key throughout the thesis. To keep an
understanding of the system’s behaviour and its capabilities, we tackle the design progress
iteratively. Initially, the scope of the possibilities is severely reduced by thorough reasoning
and careful decisions to obtain the simplest version of a robot model capable of achieving what
is believed to be most challenging, which is hopping up to a height of 4 m controllably. The
model or action strategy is then expanded with new parts and parameters to obtain a larger
set of solutions. Subsequently, new restrictions and requirements are introduced that shrink
the set of solutions. Exploring the design path that is governed by these simplifications,
expansions and restrictions could lead to a dead end. The iterative design study is then
governed by backtracking of poor decisions and use of hindsight to make improved design
decisions. The step-by-step approach allows us to have full overview of system behaviour and
build towards a more realistic system that works.

[ii]No specific requirement on Skippy’s operating time is included, but it should not be restricted to do only
a few hops.

[iii]This assumes a stroke (acceleration distance) of 0.45 m, as further explained in section 2-1-2
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1-5 Thesis Outline 5

Due to the time limitations imposed by the length of a thesis project, the studies presented
in this thesis are limited to 2D and focus mainly on the capability of controllably hopping up
to a height of 4 m. The 2D version of Skippy uses only one actuator, in contrast to the full
3D version with two actuators.

1-5 Thesis Outline

The thesis is outlined as follows. Chapter 2 provides yet undocumented preliminary studies
on Skippy that set a basis for the thesis. Chapter 3 continues with the model defined in
chapter 2, expanding it to be more realistic, and attempts to find new solutions through
an inverse dynamics approach to perform the launch phase of the highest hop to reach 4 m
controllably. Expanding the model introduces complications—caused by the aggressive motor
torque command that violates driveline limitations—which are solved in chapter 4 by changing
the action strategy, which is to be based on driveline limitations. With the ability of thrusting
the system up to a height of 4 m controllably, other required capabilities of Skippy are to
be tackled. Chapter 5 focusses on one of these abilities: balancing. The requirements for
balancing deviate most from those for hopping. Other required additional abilities are not
treated extensively because they did not fit in one thesis project. Results are included at the
end of nearly every section in the thesis, and conclusions are drawn at the end of each chapter.
Chapter 6 discusses the approach (iterative design and machine and behaviour co-design), by
analysing how it has been beneficial to the obtained results and what its pitfalls are. In
addition, limitations and appurtenant recommendations of the research are presented. A
conclusion is subsequently found in chapter 7.
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Chapter 2

From idea to model

This chapter takes the theory and idea of (3D) Skippy as defined in section 1-2 and works
towards a comprehensible 2D model of Skippy that is used as a basis for the remainder of
the thesis. Section 2-1 summarizes relevant previous and partly undocumented studies that
were done in collaboration with R. Featherstone. The section works towards delimitations
and requirements to set the research scope, for which it is essential to understand that the
thesis contributes to the first steps of a large design project within this scope. Based on the
scope, section 2-2 defines the basic model of Skippy used for dynamic simulations throughout
the thesis. The model is planar and it assumes an ideal actuator. It is based on the original
model that was provided by R. Featherstone. The chapter ends with a revamped dynamics
study that uses that model, which aims to investigate the capability of Skippy to make 4 m
high hops controllably.

2-1 Setting the research scope

This section sets the research scope by defining and describing Skippy’s morphology in sec-
tion 2-1-1 and delimitations in sections 2-1-2 to 2-1-4. Section 2-1-2 explains basic calcu-
lations that form the basis of Skippy’s requirements and section 2-1-3 explains about the
selection of mechanisms and components. Section 2-1-4 introduces an additional joint: a
passive ankle, which is introduced to obtain desired lift-off momenta to make controllable
jumps. Section 2-1-5 lists quantifiable requirements of Skippy, based on the morphology and
delimitations mentioned in the previous sections, and the demands mentioned in section 1-2.
This list of requirements applies to the entire Skippy design project and is not specifically
composed for the studies described in this thesis, which comprise only a small part of that
project.

2-1-1 Morphology

This section describes the morphology of Skippy, and summarizes the primary reasoning
behind that morphology. The morphology has been determined prior to the thesis project.
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8 From idea to model

swivel

bend

Figure 2-1: 3D morphology of Skippy, showing the actuated ‘bend’ and ‘swivel’ joints

The simplest model of Skippy consists of two revolute actuated joints and three main bodies,
of which the morphology is depicted in figure 2-1.
In order to hop high, it is required to build momentum along the vertical axis. Ideally, this is
achieved by matching the space of the actuator that does the ‘thrusting’ with the vertical axis
using linear actuation. However, for balancing we require change of angular momentum about
horizontal axes, orthogonal to the vertical axis. This implies that the linear thrust actuator
cannot be used to maintain a balanced configuration, unless the thrust axis is significantly
tilted (indicating a physical non-symmetry in the system), but this directly impairs the thrust
performance. It has been shown that such a hopping mechanism (i.e. a non-symmetrical
hopping mechanism with one linear actuator only) is indeed feasible for hopping in theory
(Kuswadi et al., 2003). However, the study focusses mainly on hopping gaits and does not
investigate balancing. In practice, researchers have lent towards usage of additional actuators,
such as Raibert’s hopping machines (Raibert, 1986), which have an additional actuator for
planar balancing and a third actuator for 3D balancing.
If we are restricted to use only two actuators to achieve 3D balancing and hopping—such as
the case for Skippy—using linear actuation is possible but not effective. Revolute joints offer
more (although non-perfect) solutions to achieve both balancing and hopping, owing to their
non-linear mapping to the desired actuation space:

• With revolute joints, the orientation of bodies with respect to each other change during
the motion. The changing non-linear dynamics of the robot during stance phase[i]

from touch-down to its lowest point, and then back up towards lift-off[ii], contribute
to build-up of all three components of momentum in the vertical plane: horizontal,
vertical and angular. This build-up occurs at different ratios at different thrust-joint
angles. This opens possibilities to have some control over the various momenta up
to a degree, depending on the system configuration. Prismatic joints offer much less
opportunity to do this.
• Revolute joints offer much better abilities to change the orientation of the robot during

flight than prismatic joints.

For planar balancing and hopping, one revolute actuated joint suffices. We refer to the system
with only this ‘bend’ or ‘knee’ joint as planar Skippy, which is similar to acrobot (Berkemeier

[i]The stance phase is the phase the robot is in contact with the ground, in contrast to the flight phase,
where the robot is flying.

[ii]Lift-off is the point of transition between the stance and flight phase, the initial condition of jumping.
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and Fearing, 1998). A second revolute actuator is added collinear to the bend plane (or
sagittal plane) to achieve balancing in 3D, known as the ‘swivel’ joint. From bottom to
top, the bodies of Skippy are referred to as leg, torso and swivel bar. The swivel bar acts
as a flywheel because its CoM coincides with the axis of the swivel joint and thus the bend
plane. Owing to this property and the collinearity of the swivel axis allow us to decouple
the problems of controlling Skippy in 2D and 3D. The decoupled 2D system has only one
actuator. This is an important property for the remainder of the thesis, which considers only
2D models that use only the bend actuator (i.e. planar Skippy).

2-1-2 Energy and dimension calculations

Back-of-the-envelope calculations and a search of COTS components form the basis of Skippy’s
ambitious requirements (Featherstone, 2014), performed and provided by R. Featherstone.
The calculations are explained in this section. A few of the suggested components are men-
tioned in section 2-1-3, as part of a study to Skippy’s transmission.

The target mass of Skippy was set to m = 2 kg, based on an iterative search of COTS
components required for a dual actuated powerful hopping and balancing robot. The only
type of actuation feasible for a robot as light as 2 kg is rotary electric motors. Hydraulic and
pneumatic actuators (including equipment required to operate those actuators) and linear
electric motors have a low power-to-weight ratio. With a 60 W or 90 W motor that is capable
of being pulsed to 200 W, a stance phase that lasts 0.2 s is able to inject 40 J into the system.
If we assume that Skippy is able to retrieve another 40 J from the previous hop—which is
50% of the total energy—then Skippy is able to jump up to a height of 80/m/g ≈ 4 m, with
g = 9.81 m s−2 the gravitational acceleration.

The assumption of being able to store energy implies that Skippy is required to have an
energy-storage spring. However, only 50% (instead of 100%) of the total energy required to
reach a height of 4 m is assumed retrievable from the spring. The idea behind this is twofold.
Firstly, it cannot be assumed that Skippy’s mechanical system is 100% efficient, i.e. some of
the energy will be lost to heat during motion. Secondly, Skippy ought to be a powerful robot:
it is to be able to jump up to 4 m in only a few hops. Skippy is not required to reach 4 m
in a single hop, nor should Skippy take tens of hops before it reaches 4 m. Allowing tens of
hops to reach a height of 4 m equates to designing the lightest actuated system with the most
energy-efficient spring, and thus implies a preference of energy efficiency over power, which is
undesired.

At the moment of lift-off, Skippy must have reached a velocity of ẏ =
√

2 g h = 8.86 ≈ 9 m s−1.
Assuming that the launch phase takes ∆t = 0.1 s, which is half the time of the stance phase,
the average acceleration is ÿ = ẏ/∆t = 89 m s−2 ≈ 9g. This corresponds to an average
vertical ground reaction force (GRF) of Fy = (9 + 1)g m ≈ 200 N. Correspondingly, we
require a stroke of ∆y = 1/2ÿ∆t2 = 0.45 m. The launch phase is the second phase of the
stance phase between the lowest point of Skippy—where it has reached zero velocity—and
lift-off. The landing phase is the first phase of the stance phase. The stroke is the distance
Skippy’s CoM travels during the launch. The leg and torso should both be approximately
half a meter long to realize a stroke of half a meter, to prevent Skippy from approaching a
stretched (singular) configuration during the launch phase.
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2-1-3 Transmission: mechanisms and components

leg

lever
torso

spring
actuator

Figure 2-2: Depiction of planar Skippy with linear driveline and revolute joint. The part of
the leg between the knee joint and linear series elastic actuation (SEA) (spring and actuator) is
referred to as lever and drawn grey. This is not the final design of planar Skippy. The final design
of planar Skippy has a four-bar linkage instead of a revolute joint at the knee (figure 2-3), and a
foot that connects to the leg via a passive ankle joint (figure 2-4).

This section describes a short study on Skippy’s transmission. A transmission is decided on
and problems of the transmission are tackled. Additional design decisions follow from this
study, including component selection.

Ball screw

From a short study prior to the thesis project on types of transmissions, it was found that
a ballscrew in combination with a linkage mechanism at the bend joint was the best way
forward. A few reasons contributed to the selection of a ballscrew as transmission:

1. The transmission should be able to transfer mechanical power over a distance that spans
part of Skippy’s torso. It is not desired to have most mass of the torso located at the
bend joint. For jumping, we want to throw as much mass as possible in the air. With
the mass at the far end of Skippy (i.e. towards the swivel bar), the stroke length will be
longer and lift-off velocity will be higher. As such, it is undesired to have the relatively
heavy motor close to the bend joint.

2. The transmission ought to be (nearly) backlash-free for purposes of control.
3. The transmission is desired to be energy efficient. Energy efficiency is not a main

requirement, but we cannot afford to dissipate a lot of mechanical power to heat as we
need it for Skippy to jump up to heights of 4 m.

4. The transmission should be as light as possible. Effectively, this aims for a transmission
that: (1) consists of materials with a high specific strength[iii], (2) is most efficiently
loaded during the heaviest task (which is ‘pulling’ the knee to make a 4 m high jump)
and (3) does not require a lot of pre-loading.

With respect to these points, ballscrews outdo all of the alternative transmissions that were
considered. A (planetary) gear head offers only a proximal transmission and thus clashes

[iii]Specific strength is a material’s strength divided by its density
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with the first point. It would have to be combined with a secondary transmission such as a
belt, a chain, cables or Bowden cables. These types of multi-stage transmissions are difficult
to make backlash-free or have low efficiency. Another disadvantage of pull-only transmissions
is that they are weight inefficient, as never more than half of the transmission can be loaded
at a time and they have to be pre-loaded. Instead of backlash-free gear heads, one could also
consider harmonic drives, but these also have a low efficiency η, typically η < 70% (HDAG,
2014). In contrast, ball screws can be made with efficiencies higher than 95% (NSK, 2008;
SBC, 2015), use a single rod to transfer both tensile and compressive forces and can be made
backlash free.

The suggested transmission also has a few disadvantages, related to singularities of the mech-
anism depicted in figure 2-2 and more specific problems directly related to the ball screw.
Both are discussed below.

Disadvantages of ballscrews are their low maximum speed, capped by the ball-return mech-
anism (Steinmeyer, 2015), and their fragility compared to for instance belt drives. This
problem can be tackled using a series elastic element, which is also used for energy storage.
The elastic element, referred to as main spring, will be connected to the nut of the ball screw
and to a lever that drives the bend joint as depicted in figure 2-2 (with the ball screw and
motor referred to as actuator). The spring, ball screw and motor form a linear series elastic
actuation (SEA). The SEA is also referred to as the series elastic driveline.

A disadvantage of the actuation mechanism—which consists of a linear driveline and a lever—
as depicted in figure 2-2, is the existence of singularities. Skippy’s leg ought to have a range
of motion (RoM) of 180◦, from a fully flexed to fully extended configuration. Figure 2-2
suggests that the lever has to rotate over the same range, i.e. it suggests a transmission ratio
from the lever angle to knee angle of 1:1. However, the lever cannot be rotated over this
range because it would cross a singular configuration. To prevent the lever from approaching
a singular configuration, where the transmission ratio is extremely low, an input range of
approximately 90◦ is desired. This problem is introduced by replacing the revolute joint at
the knee in figure 2-2 for a four-bar linkage, which is described below.

Four-bar linkage

Figure 2-3: In contrast to a ‘regular’ revolute joint, the crossed-four-bar linkage or isogram
creates an approximate 1:2 gear ratio and allows for a range of ∆φknee > 180◦. For flexing, the
mechanism does not cross a singular configuration as long as dmin does not cross zero.

The desired transmission ratio between the angle of the lever and knee angle is approximately
90
180 = 1

2 . This transmission can be can be realized by using a four-bar linkage, such as the
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one depicted in figure 2-3. Four-bar linkages have been used in robotic joints before (Khan
et al., 2015; Pfeifer et al., 2012). The four-bar linkage developed by Khan, also referred to
as a crossed-four-bar linkage or isogram, consists of two main bodies—which would be the
leg and torso—and two links that connect to the leg and torso in a crossed configuration,
closing the kinematic loop. The isogram mechanism is depicted in figure 2-3. One of the links
is used as lever and rotates with approximately 90◦ to induce a 180◦ rotation between the
leg and torso. Moreover, the crossed configuration makes this four-bar linkage very compact
and thus very suitable for Skippy’s purpose, which is why we adopt it to be part of Skippy’s
transmission.

Ball screw and motor calculations

This section expands on the back-of-the-envelope calculations in section 2-1-2 and the pro-
posed transmission, which leads to a set of suggested dimensions and components, including
the ball screw, motor and batteries.

Miniature ball screws from Steinmeyer with end cap deflectors, such as those of series 2412
(Steinmeyer, 2015), have been observed by other robotics researchers to survive rotational
velocities over 6000 rpm, 33% higher than the maximum specified of 4500 rpm—which is
already higher than most of its competitors.[iv] With a linear travel of the tip of the lever of
approximately ∆xq = 10 cm during the launch phase, the nut would be required to travel at
an average velocity of ∆xq/∆t = 0.10/0.10 = 1.0 m s−1 without a spring. The ball screw’s
spindle is available with leads of 2, 4, 5 and 8 mm, which corresponds to maximum speeds
of 0.2, 0.4, 0.5 and 0.8 m s−1 respectively for an assumed maximum velocity of 6000 rpm. A
ball screw with a lead of 8 mm can thus nearly produce the desired 1.0 m s−1 even without a
spring, but leads as high as 8 mm require the motor to run at torques that are too high. With
an estimated lever travel of xq = 10 cm, the average force on the ball screw is approximately
0.9 kN, with estimated peaks that could reach up to twice this average. The corresponding
torque for an n = 8 mm lead and F = 2 kN thrust force is T = F n/2/π = 2.6 N m, more
than twice the stall torque of Maxon Motor’s RE35 90 W 24 V motor[v] brushed DC motor,
whereas the torque for optimal power output is approximately at half the stall torque. The
RE30 60 W and RE35 90 W series of Maxon Motor are capable of delivering sufficient power
when they run at the right velocity and torque, so there is no need to step up to the heavier
RE40 (150 W) series.[vi] Instead, it was necessary to fix on a lead of 2 mm as this is the best
choice for the torque-velocity characteristics of the motor.

Another possibility is changing the above assumed lever travel ∆xq = 0.1 by changing the lever
length lq (the length of the part marked grey in figure 2-2). If the lever rotates approximately

[iv]We have also looked into ball screws of Maxon Motor and NSK, but their specifications regarding maximum
transmissible force, speed and weight were lagging behind those of Steinmeyer.

[v]Note that “90 W” in “RE35 90 W 24 V” refers to an approximation of the nominal mechanical power that
it delivers for continuous operation at maximum efficiency and nominal voltage, 24 V. The maximum power
the motor is capable of delivering is much higher, and approximately equal to the product of half the no-load
velocity and half the stall torque, which for this motor is 245 W for 24 V

[vi]Moreover, stepping up to heavier motors would require us to change our 2 kg budget, which was based
under the assumptions of using a relatively light motor (section 2-1-2). Other series and brands of motors were
also included in the comparison, but most of the optimal rotational velocities of other motors are unfavourably
higher and the RE-series of Maxon Motor seemed to match our quality and price range best.
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60◦[vii] during Skippy’s launch, then the lever length is approximately lq ≈ ∆xq. The maxi-
mum permissible absolute axial force on the Steinmeyer ball screw is Fn,max = 3.1 kN. Reduc-
ing the lever length further increases the maximum thrust force of approximately F = 2 kN
on the ball screw. This can be done to an extent, but not by a factor of two. Reducing the
lever length furthermore has the disadvantage of reducing the accuracy. Increasing the lever
length is also advised against, because this increases the problem of limited transferable speed
and furthermore increases the size of the joint, making it more vulnerable.

The lever length is assumed lq = 10 cm for now, and together with a lead of 2 mm, this implies
that the spring is going to play a vital role in achieving 4 m high jumps. It also implies that
the spring has to have a relatively low stiffness when thrusting. To shorten the required spring
elongation and to improve balancing performance—for which high bandwidth and thus high
stiffness is preferred—the spring’s load-displacement profile is likely to be regressive (also
known as ‘weakening’), implying that it is stiffer when unloaded than loaded.

The usage of 2× 4-cell lithium-polymer battery packs are assumed for motor torque-velocity
calculations, with a maximum voltage of 8×3.7 = 29.6 V with an assumed voltage drop of 10%
of this amount: .9× 29.6 = 26.6 V. Note that this is a pessimistic estimate; lithium-polymer
batteries are known for their low voltage drops. The motors can thus be driven slightly above
their nominal voltage of 24 V.

2-1-4 Passive ankle

Sections 2-1-2 and 2-1-3 have focussed only on Skippy’s desired ability to make powerful
jumps, which is governed by the build-up of vertical momentum during the stance phase.
This section focusses on Skippy’s desired ability to jump controllably, for which it is required
to build up other desired components of momentum. For planar Skippy, these components of
momentum are horizontal and angular momentum in the vertical plane. The desire to jump
controllably leads to the introduction of a passive ankle joint.

To analyse angular momentum build-up during the launch phase, it is important to have
an understanding of planar Skippy’s non-symmetrical morphology and its mass distribution.
Skippy is a non-symmetrical system due to its bend joint and its unevenly distributed mass.
It was explained in section 2-1-2 that Skippy preferably has a lot of its mass at the far end
of its body for thrust purposes. For balancing it is required to have some mass close to the
knee as well. The mass of Skippy’s toe (i.e. foot tip or contact point) is preferably as low
as possible, because it will lose all its kinetic energy when it hits the ground during impact.
The leg mass excluding toe can be higher, because its kinetic energy during impact will be
absorbed by springs. In fact, the leg should have a mass to allow for reorientation during
flight. Nevertheless, for thrust purposes, the torso (including swivel bar and its driveline)
is going to be the heaviest component with an estimated mass of 90% of the whole system.
The leg mass and inertia have a small but non-negligible effect on both balancing and thrust
behaviour.

The torso and leg will counter-rotate during the launch phase, but since the torso is much
heavier than the leg, it is expected that Skippy will build up a net positive angular and
horizontal momentum. This theory is confirmed by a quasi-static analysis conducted in

[vii]60◦ corresponds to a knee rotation of 120◦, approximately 2
3 of the full 180◦ range
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Figure 2-4: The proposal of a passive ankle to decompose the launch phase into a thrust and
steering phase. The ankle unloads during the steering phase to bring back angular and horizontal
momenta to zero. The images depict the loading of the main spring as well, but the lever and
linear driveline are not drawn.

appendix A by R. Featherstone, and later in dynamic simulations, such as those conducted
in section 2-2. Several solutions are explored to lower the build up of angular and horizontal
momentum, of which some are mentioned in appendix A. Shortening the leg, which reduces
momentum build-up, is not a feasible option for various reasons explained in appendix A
but also because bringing the foot closer to the bend joint reduces the ability to do in-flight
control. Initial conditions of the launch phase (i.e. when Skippy is at its lowest point) can
be altered and are able to reduce the build-up of undesired momentum to some extent, in
cooperation with a gravitational component. However, no strategy was found that sufficiently
reduced the momentum build-up and secondly, none of the strategies were able to provide
more control over lift-off momenta with the given system. Having control over momentum
build-up is required to make different types of acrobatic manoeuvres.

Solutions were explored that included alteration of the physical system. A practical solution
was found based on elongating the leg length during the end of the launch phase. The
introduction of a passive ankle allows for prolonged contact with the ground, which is used
to ‘steer’ Skippy to reduce momentum. The launch phase would then be decomposed in
a thrust phase and steering phase. Build-up of vertical momentum by injecting maximum
power is done during the thrust phase. During thrust, the ankle is loaded. When Skippy
would lift-off without the passive ankle, the ankle will start to unload. The GRF will change
direction and will point to the other side of Skippy’s CoM, depending on the action strategy
used on the bend joint. While Skippy is approaching a stretched configuration, the bend joint
is less capable of controlling vertical momentum, but more capable of controlling horizontal
momentum. However, without the ankle, Skippy would prematurely lift-off and the bend
joint does not have time to control for horizontal momentum. Moreover, during the steering
phase, the unloading ankle spring will inject more kinetic energy in Skippy, such that also the
steering phase contributes to build-up of vertical momentum, but to a lesser extent than the
thrust phase.

The concept of the ankle joint is elucidated in figure 2-4 and tested by dynamic simulations
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in section 2-2, where it is shown that the passive ankle joint works satisfactory as it allows
control over planar lift-off momenta.

2-1-5 Requirements

Below follows a list of quantifiable requirements, based on the main requirements mentioned
in section 1-2 and delimitations in sections 2-1-1 to 2-1-4. They are requirements that apply
to the overall design project of 3D Skippy. This thesis describes a principal stage of that
design project, and thus does not relate to all these requirements. The thesis investigates the
design of a simplified planar version of Skippy with one actuator that could achieve the 4 m
hop and would at least plausibly be capable of other behaviours as described by below list,
such as balancing, even if the performance of these behaviours are not investigated in detail.

• 2 actuators The desire for maximum simplicity is mainly reflected in the number of
actuators that Skippy is allowed to have. This number is equal to two, which is the
minimum number of actuators required to achieve 3D balancing and hopping.[viii]

• COTS components Owing to the desire for simplicity and low-cost, Skippy is to
be built from only commercial off-the-shelf (COTS) components, except for structural
elements.
• 4 meter hop Skippy should be able to hop up to heights of 4 m, measured as the

distance between the CoM at lift-off and the highest point it reaches in mid-air.
• 50% energy from previous hop Skippy does not have to reach 4 m in a single hop;

it is allowed to passively store some energy from the previous hop to hop higher. With
50% energy recovery, Skippy should be able to hop from 2 m to 4 m in an ideal case
(where we assume 100% energy efficiency). In an unacceptably bad case, where 50% of
energy is lost during stance phase, Skippy would require a hop of 4 m to reach another
4 m. In practice—where an efficiency between 50% and 100% is assumed—the result
will be somewhere in between both cases, perhaps requiring a 3 m hop to reach 4 m.
For now, no further assumptions or requirements are made regarding the efficiency of
Skippy.
• Control over lift-off momenta In order to have a robot that is acrobatic or versatile

in general, it is important to have control over lift-off momenta. This implies vertical
momentum, but also horizontal and angular momentum. Control over lift-off momenta
is achieved by the introduction of a passive ankle.
• 5◦ balance recovery Related to the desired ability for Skippy to be a robust balancer,

it is required that Skippy is able to recover balance for a range of 5◦ CoM offset with
respect to the contact point, for at least half the range of the bend joint (i.e. 90◦).
• 180◦ bend RoM Following from the desire of Skippy’s autonomous ability to stand-

up, its leg should be able to fully flex itself. Skippy should also be able to fully stretch
itself to maximize its capabilities for balancing and acrobatic manoeuvres. These de-
mands are the foundations for the requirement of a full 180◦ of the bend joint. A
four-bar linkage is used to realize this.
• two-arm swivel bar Another requirement that follows from the desired ability of

being able to stand up autonomously, is the shape of the swivel bar. As can be seen in
[viii]Note that the number of actuators for planar Skippy is further reduced to only one actuator.
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figure 2-1, the swivel bar consists of two arms, which is the minimum number of arms
required to have its CoM coincide with Skippy’s sagittal plane. These two arms allow
Skippy to make a three-point contact with the floor when standing up. Standing up
could also be possible with a three-arm swivel bar, but this already significantly dimin-
ishes Skippy’s compactness. Moreover, a two-arm swivel bar allows for a lighter design
and for Skippy to reach lower (more flexed) positions without touching the ground.
• Survive 4 meter fall Skippy is a cheap and experimental platform. One of its targets

is to make fast progress in robot hardware development and testing. For these reasons,
it is important that Skippy survives all of its crashes from 4 m heights, whether by a
sacrificial or permanent protection layer.
• detachable leg Skippy’s leg should be detachable and replaceable by another (type

of) leg, which is also related to Skippy being an experimental platform. Moreover, this
allows us to put main focus on other parts of Skippy for the design process.
• 2 kg Skippy is light-weight. The target weight of the robot is 2 kg.

2-2 A first 2D model of Skippy

This section introduces the basic dynamic model of planar Skippy that is built upon through-
out the thesis. All models in the thesis are planar. The model with its parameters is described
in section 2-2-1. Subsequent sections focus on dynamic simulations with this model and ex-
plain about the launch strategy to make Skippy jump with desired lift-off momenta.

2-2-1 Dynamic model description
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torso
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Figure 2-5: Zero configuration (q = 0) of Skippy with all joint coordinate frames and a 1:1
geared knee joint. This diagram forms the basis of Skippy’s planar dynamic model and is drawn
to scale.Bodies are identified by name, and joints by number. The coordinate frames of the first
two (fictitious) bodies coincide and are shown in pale grey.

To do simulation studies of Skippy, it is required to define a dynamic model. This section
describes that model.

Skippy including the ankle is modelled as a planar mechanism with six joints and six bodies.
Joints are numbered 1 to 6. Joints 3 to 6 are named toe, ankle, lower knee and upper knee
respectively, as listed in table 2-1. Joints can be described as being either revolute (rotational)
or prismatic (translational). The six joint positions are described by joint variables and are
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elements of vector q:
q =

[
q1 q2 q3 q4 q5 q6

]T
Joint variables are either angles (in radians) or distances (in metres). Corresponding joint
torques or forces are denoted τ = [τ1 · · · τ6]T. Bodies are also numbered 1 to 6, and
bodies 3 to 6 are named foot, leg, lever and torso respectively. Both joints and bodies are
numbered sequentially from a fixed base, which is the ground, regarded as body 0. Joint i
connects between body i and i − 1. Bodies 1 and 2 are fictitious massless bodies that hold
together joints 1 to 3. Joints 1 and 2 are prismatic joints in the horizontal (x) and vertical
(y) directions that determine the position of the foot. Imaginary actuators supply whatever
forces are necessary to hold the toe at the ground, and to prevent the toe from slipping. The
imaginary actuator forces are the horizontal and vertical GRF. Joints 1 and 2 thus provide
an easy way of calculating the GRFs. q3 and q4 are rotational joints located at the foot’s
contact point and ankle, describing the foot and leg rotation, respectively. q5 and q6 describe
the knee joint and emulate the isogram (four-bar linkage) explained in section 2-1-3, referred
to as the lower and upper knee joint respectively. These are two revolute joints geared 1:1
and describe the rotation of the lever and torso respectively.
The knee angle is defined as φknee = q5 + q6, implying a 1:2 gear ratio R1 between the upper
knee joint and knee:

R1 = ∂q6
∂φknee

= 1
2 (2-1)

The full four-bar linkage is not yet implemented because it is yet unknown how it should
be dimensioned. The dimensioning mainly affects the transmission ratio. The emulation is
a neutral solution and prevents us from having to add additional parameters to the model
that have to be tuned. Similarly to the 1:1 geared joints, the isogram mechanism creates an
approximate average gear ratio of 1:2 between the lever and knee angle (a lever rotation of 90◦

allows for a 180◦ knee rotation). For both the 1:1 geared joints and the isogram mechanism,
the instantaneous point of rotation is not a fixed point relative to any of Skippy’s joints. The
path travelled by the instantaneous point of rotation—known as the centroid—is described
by a circular arc and ellipse respectively for the 1:1 geared joints and isogram mechanism.
Model parameters are listed in table 2-1. Each body i has a mass mi, rotational inertia about
its CoM Ii and coordinates of the CoM ci = [ci,x ci,y]T expressed in its local frame Ψi. Ψi

is embedded in body i and located at joint i if it is a revolute joint. As such, dimensional
and inertial parameters of body i in Ψi are constant. Xi ∈ SE(2) is the coordinate transform
from the parental frame of Ψi to Ψi. All bodies form a serial chain and are expressed relative
to each other. As such, all parental frames are Ψi−1, i.e. Xi = (Ψi−1 → Ψi). Coordinate
transforms are 3 × 3 matrices but can also be expressed as a 2D translation ri = [ri,x ri,y]T
and rotation θi. Typically, the length li of body i equals ‖ri+1‖. For q = 0, all coordinate
frames have the same global orientation except for Ψ3 as can be seen in figure 2-5: the ankle
is at rest at an angle of 60◦ with respect to the ground.
Most of Skippy’s mass (90%) is located in the torso, which contains all the equipment and
actuators, including that of the swivel bar. Rotational inertias of the torso and leg are chosen
to represent values in between that of a slender beam and a point mass on a stick, as we
prefer the mass to be well distributed, explained in sections 2-1-2 and 2-1-4. The position of
the CoM of the torso is placed so as to achieve an approximate knee angle of φknee = 90◦ by
the end of the thrust phase, as further explained in section 2-2-2. The foot has a length of
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lfoot = 12 cm and a corresponding stroke length of approximately 14 cm, which is sufficient
to bring angular momentum back to zero as shown in section 2-2-6.

Featherstone’s articulated-body algorithms (Featherstone, 2008c) with corresponding Mat-
lab software suite Spatial_v2 (Featherstone, 2012b) are used for dynamic modelling. The
dependency between q5 and q6 is implemented using a loop closure function γ(y) and is
defined as

q = γ(y) (2-2)

which calculates q explicitly. y is the set of independent position variables. q6 is chosen as
independent position variable and q5 as dependent position variable, so we have:

y = [ q1 q2 q3 q4 q6 ]T

The equations of motion (EoM) including the loop closure function together with the enforced
zero acceleration of the toe are defined using hybrid dynamics equations, which combines
forward dynamics (FD) and inverse dynamics (ID). More information on the implementation
of the hybrid dynamics and loop closure can be found in appendix B.

i joint name body name mi [kg] Ii [kg m2] ci [m] ri+1 [m]
3 toe foot 0.05 m1 0.042 = 8× 10−5 [0 0.06] [0 0.12]
4 ankle leg 0.15 m1 0.172 = 4.3× 10−3 [−0.25 −0.08] [−0.50 −0.08]
5 lower knee lever 0 0 [0 0.10] [0 0.10]
6 upper knee torso 1.8 m1 0.172 = 5.2× 10−2 [0.38 0]

Table 2-1: Skippy parameters

2-2-2 Thrust conditions

This section describes a method for finding viable torque profiles for the active upper knee
joint and passive ankle joint. It also provides and explains the initial conditions and thrust
force profile.

The dynamic model of Skippy described in section 2-2-1 has two independent joints that do
not connect to the ground: the ankle joint and the upper knee joint. However, only the upper
knee torque joint is actuated. The ankle joint is passive. Nonetheless, the ankle torque τ3
is not zero, because of the presence of an ankle spring. A spring load-displacement profile
of the ankle torque τ3 and an actuator torque profile for the knee torque τ6 are yet to be
defined. To find valid profiles for both, we propose a simulation study that is twofold: one
simulation is done where the ankle joint (joint 4) is locked (i.e., held at a given fixed angle
by means of an imaginary actuator) and one where it is spring-loaded and free to move. The
first simulation considers only the thrust phase, whereas the second simulation considers both
the thrust and steering phase. For the first simulation, a thrust force with a specified vertical
component fy,c is applied at the foot while the acceleration of the ankle is kept zero so as to
find thrust profiles for both the ankle and knee joint. These thrust profiles are used to define
the ankle spring load-displacement profile and a torque profile for the actuated upper knee
joint (q6). The resulting profiles are then applied to the second simulation, where the ankle
is free to move. For the thrust phase, the second simulation should have approximately the
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2-2 A first 2D model of Skippy 19

same results as the first simulation if the ankle spring is sufficiently stiff, as a connection with
a higher stiffness approaches a connection that is rigid (i.e. locked).
To do the first simulation, we have to specify the above mentioned fy,c and initial condi-
tions of the system. A constant thrust force profile fy,c : τ2 = Fy = 200 N—taken from
section 2-1-2—is applied for 0.1 s to reach a thrust velocity of vy ≈ 9 m s−1, after which the
simulation stops (i.e. no steering). The ankle is locked at q4(t = 0) = q4,0 = π/3 − 0.1 rad
which corresponds to the flexed configuration that the ankle should have during the thrust
phase. The flexed configuration is chosen such that the ankle would never come close to the
ground possibly causing an undesired collision. Skippy initially starts at its lowest point,
where its knee is almost maximally flexed at q5,0 = q6,0 = 0.1 rad and its velocities are zero
(q̇0 = 0). Here, and in the remainder of the thesis, the subscript 0 always indicates initial
condition, i.e. a0 := a(t = 0) for any variable a.
With the leg and torso dimensions listed in section 2-2-1, Skippy reaches a non-stretched
configuration by the end of the thrust phase. If Skippy would be too small, Skippy would
reach a stretched configuration (φknee = 180◦) prematurely which is to be avoided as steering
would no longer be possible. At t = 0.1 s, Skippy’s CoM has travelled ∆y = 0.45 m, which
corresponds to a knee angle of φknee ≈ 90◦ such that Skippy has sufficient travel left during
the steering phase without having to approach the fully stretched configuration.
The initial foot angle q3,0 is chosen to obtain a desired initial CoM angle φ0. φ is the angle
between the ground (perpendicular to gravity) and the line that passes through the CoM and
foot. φ = π

2 rad corresponds to a statically balanced configuration. This initial angle mainly
affects the build-up of horizontal momentum, rather than angular momentum. φ0 is set to
a value through a few iterations of the simulation studies presented in subsequent sections
(i.e. sections 2-2-3 to 2-2-6) to allow for the steering phase to bring both the angular and
horizontal momenta back to zero at lift-off. An initial guess is φ0 = π

2 rad, which corresponds
to the balanced configuration of the robot.
The results of the simulations presented in sections 2-2-3 to 2-2-6 (in which torque profiles
are defined) use φ0 = π/2 + 0.2 rad (a 0.2 rad offset with respect to the balanced config-
uration). The preliminary simulation studies to set φ0 are of little importance as they do
not significantly change the dynamic behaviour of Skippy, and are thus not presented in the
thesis.

2-2-3 Interim results: locked ankle

With the thrust conditions described in section 2-2-2 and the dynamic model by figure 2-5
and table 2-1 in section 2-2-1, thrust simulations of Skippy with a locked ankle have been
performed. The purpose of this study is to extract torque profiles for the ankle and the upper
knee joint.
Momenta during the thrust phase with the locked ankle are plotted in figure 2-6a, where it
can be seen that positive angular and horizontal momenta are built up. The torque profiles
that follow from the thrust force are displayed as dashed lines in figure 2-7a for the ankle
and in figures 2-7c and 2-7d for the knee. The ankle and knee torques are used to devise a
load-displacement profile fτ4(q4) for the ankle spring and an actuator torque profile fτ6(q6)
for the upper knee respectively. The results are used to devise an ankle spring profile and
knee thrust torque profile in sections 2-2-4 and 2-2-5 respectively.
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(a) Ankle locked (no steering)
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(b) Free ankle with spring
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Figure 2-6: Linear and angular momenta. The ankle spring (right) brings non-vertical momenta
back to zero.

2-2-4 Ankle spring profile

This section describes the desired behaviour of the ankle joint and—together with results
presented in section 2-2-3—defines the ankle spring profile to obtain this behaviour.

The ankle is going to be fully compressed (thrust), at rest (balancing, lift-off) or in between
these two states. When compressed or at rest, the spring should be relatively stiff such that it
barely affects the system’s dynamics or control bandwidth. During steering it will decompress
over its full range, meaning that the stiffness can be much lower during this phase (it can
almost be zero). The spring profile is thus stiff at both ends and compliant in between, from
which follows that the ankle spring has a reversed S-shape (albeit monotonically increasing),
as depicted in figure 2-8. A typical spring profile could be realized by making use of rubber
end stops.

As can be seen from figure 2-7a, the minimum ankle torque is τ4,min = 14 N m, which is
also the initial torque τ4,0. This implies that the spring steering or crossover torque τco—the
torque around which the stiffness is very low—must be slightly lower than 14 N m and that
fτ4(π/3− 0.1) = 14 N m. The spring profile chosen is defined as follows:

fτ4(q4) : τ4 = τco tanh (c1 q4) + (τ4,0 − τco) 2c2(q4−q4,0) (2-3)

with c1 = 10 and c2 = 30, two constants that affect the stiffness at rest and when fully flexed
respectively. The initial angle is q4,0 = π/3 − 0.1 rad and the crossover torque is chosen at
τco = 12 N m, 2 N m lower than τ4,min.

2-2-5 Knee torque profile: thrust and steering

The knee torque profile consists of a thrust and steering profile, which are both described in
this section. The thrust torque profile is defined based on results obtained in section 2-2-3.

The knee thrust torque τ6 is nearly linear to q6, as can be seen in figure 2-7d. We have
therefore defined the actuator torque as a linear ramp from the initial torque τ6,0 at q6,0 =
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(a) Ankle torque and angle vs time
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(b) GRF and ratio vs time
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(c) Upper knee torque and angle vs time
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(d) Upper knee torque vs angle
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Figure 2-7: Ankle and knee joint torques and positions of the launch phase with both the thrust
and steering strategy as described in the text, assuming a spring-loaded ankle. The difference
between both strategies is shown clearly in figure 2-7b: during the thrust phase, Fy is kept close
to 200 N regardless of the value of Fx; during the steering phase, the ratio of these two forces is
forced to be µ = −0.5 for the purpose of lowering the horizontal and angular momentum.

0.1 rad (at t0 = 0 s) to the torque that we measure at the end of the thrust phase τ6,f at
q6,f = 0.8 rad (tf ≈ 0.1 s) from the simulation with the locked ankle in section 2-2-3. Note
that τ6,0 = 171.5 N m is directly calculated from the desired initial thrust force Fy = 200 N.

fτ6t(q6) : τ6 = τ6,0 − (τ6,0 − τ6,f ) q6 − q6,0
q6,f − q6,0

(2-4)

This thrust torque is held until Skippy’s upper knee reaches an angle q6,f ' 0.8 rad (corre-
sponding to φknee ' 90◦), which is the angle at which we switch to the steering phase. q6,f is
retrieved from the simulation with the locked ankle where Skippy reached an upward velocity
of ẏ = 9 m s−1, approximately at t = 0.1 s, but slightly earlier. From this point onwards, the
upper knee steering torque profile fq6,s(q, q̇) is computed so as to put the direction of the
GRF on the edge of an imaginary friction cone with slope µ = Fx/Fy, effectively adjusting the
hybrid dynamics. µ can take any value approximately between −1 and 1 to prevent slipping,
but should be negative to correct for the positive angular and horizontal momenta that are
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Figure 2-8: Load-displacement profile of ankle spring: stiff at both ends for balancing and thrust
and compliant in between for steering.

built up during the thrust phase.

(a) Knee torque vs angle
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(b) Momenta vs time
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Figure 2-9: The plots show that a different steering action (µ = 0 instead of µ = −0.5 in
figures 2-6 and 2-7) can be used to obtain different lift-off momenta, confirming the controllability
of the 4 m hop launch.

2-2-6 Results

The results of Skippy with a spring-loaded ankle (with the ankle spring profile and knee
torque profile defined in sections 2-2-4 and 2-2-5 respectively) are presented below.

The effect of the spring-loaded ankle is best observed in the momenta plot in figure 2-6b.
The results for the thrust phase are nearly the same as those of the system with the locked
ankle, except for a very small wobble caused by the ankle spring. The ankle has obvious force
oscillations as can be seen in figure 2-7a, but the position oscillations are very small due to
the high stiffness when fully flexed such that the dynamics are barely affected.

When switching to the steering phase, the load on the ankle drops significantly which causes it
to unload. For µ = 0.5, we are able to bring back both the angular and horizontal momentum,
as can be seen in figure 2-6b. A different steering action, such as µ = 0 (implying only a
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2-2 A first 2D model of Skippy 23

vertical reaction force) leads to different lift-off momenta, as can be seen in figure 2-9b. This
implies improved controllability over lift-off momenta, which was one of the intentions of the
ankle spring. The steering furthermore still contributes to thrust, as the released energy of
the ankle spring is mainly transferred to vertical translational energy. This can be seen in
figure 2-6b, where vertical momentum is still built up, albeit slightly less than during the
thrust phase.

We have furthermore experimented with altered ankle spring profile parameters, but their
effect on the global system dynamics seemed negligible. For instance, changing the stiffness
changes the oscillation frequency but the time of unloading is barely affected.

The GRFs and their direction are plotted in figure 2-7b, from which can be seen that Skippy
does not slip (|Fx/Fy| < 1) and it can be confirmed that Fx/Fy = −0.5 during steering.

The main problem encountered is the discontinuous switch between the thrust torque and
steering torque, as can be seen in figures 2-7c, 2-7d and 2-9a. This discontinuity is not
reproducible in reality due to the compliant driveline.

Concluding remarks

This chapter has worked towards a simplified planar model of Skippy based on requirements
of the physical model that are defined in the beginning of the chapter, with the main purpose
of allowing Skippy to hop up to a height of 4 m controllably. The introduction of an ankle
spring and launch strategy, where the launch phase is decomposed into a thrust and steering
phase, allow us to obtain desired lift-off momenta: Skippy is able to reach a height of 4 m
and we have some control over horizontal and angular momentum at lift-off, which has been
confirmed by the dynamics study in section 2-2. The latter suggests that we have control
over the 4 m hop motion.

The behaviour of the ankle with its current dimensions and profile is satisfactory, and since
the leg of Skippy is going to be detachable and replaceable, we are not going to put main focus
on optimizing its parameters. However, the transition between the thrust phase and steering
phase is discontinuous and the actuated joint is modelled as a perfect torque source. Towards
the design of a realistic launch strategy, more viable torque profiles are to be developed and,
subsequently, more realistic actuator and driveline models have to be implemented, which is
tackled in chapter 3
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Chapter 3

Inverse dynamics approach

This chapter builds on the study using the first model of Skippy conducted in section 2-2.
The goal of this chapter is to find a pre-defined knee torque profile that can be reproduced by
the motor through the series elastic driveline. Section 3-1 aims to find a more realistic and
broader set of knee thrust torque profiles than the one found in section 2-2. In section 3-2,
we implement the linear and series elastic driveline in Skippy which put limitations on the
capabilities of the input, which up till now have assumed to be a perfect torque source.
The section then investigates the reproducibility of the new knee torque profiles defined in
section 3-1 on Skippy with the newly defined series elastic driveline.

3-1 Knee torque profiles

Recall that it is necessary for Skippy to have a spring in series with the motor for Skippy to
reach a height of 4 m. This spring has to be located in the driveline—i.e. between the knee
joint and motor—because of the limited velocity of the nut of the ball screw (see section 2-1-2).
The thrust profile obtained in section 2-2-6 is the desired thrust profile at the knee joint.
However, this profile is not reproducible by a motor connected in series with a spring, as
the instantaneous force jump requires an instantaneous position jump of the spring, which
is physically impossible. The instantaneous force jump implies that the order of continuity
is C−1. The series elastic driveline requires the order of continuity to be at least C1. The
following steps are taken to find a feasible continuous torque profile:

• Section 3-1-1 implements a different thrust profile to reduce the discontinuous step
between the thrust and steering phase.
• Section 3-1-2 implements a fuzzy crossover between the thrust and steering phase to

remove the remaining discontinuity.

Results are discussed in section 3-1-3.
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3-1-1 Parabolic thrust profile

This section aims to introduce a more realistic thrust profile than the one based on a constant
force profile for Fy defined in section 2-2, by replacing that constant profile for a parabolic
thrust profile.

The constant thrust force of 200 N leads to an undesired high knee torque at the end of the
thrust phase. Moreover, the time derivative of this thrust force is always zero, whereas it
ought to be positive initially. The initial configuration of the thrust phase corresponds to the
lowest point Skippy reaches, where the velocities of all bodies in Skippy are approximately
zero. Initially, the main spring is already partly charged with energy from the previous hop,
but will not discharge until shortly after the beginning of the thrust phase. This is related to
a non-symmetry of the thrust and landing phase, where we want the nut to do positive work
throughout both the thrust phase and most of the landing phase, including the transition
from landing to thrust. This implies that the main spring’s initial velocity is non-zero, and
that it is being charged. The rate of the thrust force is then also positive because the spring’s
load-displacement profile is monotonically increasing. As a result, we are looking for a new
thrust force profile fy(t) that satisfies

fy(tf ) < fy,c (3-1)
ḟy(0) > 0 (3-2)∫ tf

0
fy(t) dt =

∫ tf

0
fy,c dt (3-3)

with fy,c =200 N the old thrust torque. Equation (3-3) implies constant vertical momentum
at lift-off—and thus equal jumping height. The new transition time tf will not be exactly
the same as the old one, but for a first approximation it is reasonable to assume that it
is. Another option is to make the thrust profile displacement-based rather than time-based:
fyy(y), where y is the vertical position of Skippy’s CoM. The integral in equation (3-3) would
imply constant kinetic energy assuming that the transition position yf is the same for both
profiles. Both tf and yf are expected to change slightly, so neither profile is fully accurate.
However, one of the difficulties related to a displacement-based profile, is that Ḟy,0 > 0 and
ẏ0 = 0 imply that ∂Fy,0/∂y →∞. Note that if Fy is a function of only y, and y a function of
only t, the only independent variable is t, and we can write:

Ḟy,0(y(t)) = dFy,0
dt

= ∂Fy,0
∂y

dy0
dt︸︷︷︸

ẏ0=0

> 0⇒ ∂Fy,0
∂y

→∞

The following parabolic thrust profile satisfies the conditions in equations (3-1) to (3-3):

fy(t) : τ2 = fy,c −
d

c2 t2 + 2 d

c
t (3-4)

which is conveniently chosen such that it also satisfies fy(0) = fy,c. The profile is depicted in
figure 3-1. c is a third of the estimated duration of the thrust phase, i.e. c = 0.1/3 s. d is
a value to be experimented with and is a measure for the appearance of the parabola. For
d = 0, fy(t) = fy,c; increasing d allows us to reduce the discontinuity between the thrust and
steering phase. However, we have that fy(tf ) = fy,c − 3d, implying that for d > fy,c/3 ≈ 67
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N, fy(tf ) < 0, which means that Skippy would lift-off prematurely. Moreover, high values
of d might lead to premature relaxation of the ankle spring, which could lead to undesired
system behaviour.

A thrust torque profile for the knee is then devised in the same way equation (2-4) was
devised. However, this time we derive two profiles: one as function of the upper knee angle
fτ6t(q6) and the other as function of time fτ6t(t). We prefer the thrust torque to be defined
as function of angle for control purposes, similar to equation (2-4). However, we have that
∂τ6,0/∂q6 → ∞ because ẏ0 = 0 ↔ q̇6,0 = 0 and Ḟy,0 > 0 ↔ τ̇6,0 > 0. This is troublesome for
numerical integration, especially if it will be required to calculate derivatives. In these cases,
fτ6t(t) (as function of time) is called instead of fτ6t(q6) (as function of angle).

0 tf
0

d

c = tf /3

3d

t

F
y

constant
parabolic

Figure 3-1: Parabolic thrust profile for Fy: the surface area below that of the parabola and
constant are equal. This new profile aims to improve the old (constant) profile by having an
initially positive rate and lower final value.

We follow the same approach as in section 2-2. Firstly, we lock the ankle from which we can
retrieve knee thrust torque profiles based on inverse dynamics. This will be done for multiple
values of d to find out how d affects the torque profiles. Next, we will apply the various torque
profiles—including the unaffected steering phase—to the model with the ankle spring.

Parabolic thrust profiles fy(t) for values of d up to d = 80 N were tested on Skippy with the
locked ankle. The vertical velocity of the CoM ẏ as function of time t and d is plotted in
figure 3-2a. The target velocity of ẏ = 9 m s−1 is reached slightly before t = 0.1 s, correspond-
ing to what was found in section 2-2-5. Strongly parabolic thrust profiles reach the target
velocity slightly earlier because the initial work delivered is higher, which also affects q6,f .

For d > 67 N, the system starts to decelerate after it has reached its target velocity due to the
negative (i.e. pulling) thrust force Fy, but this data is not of interest and thus not considered
in future analyses. The ankle torque as a function of t and d is plotted in figure 3-2b, including
a plane of the crossover torque τco = 12 N m. For higher values of d (d & 30 N), the ankle
torque goes below the crossover torque during the thrust phase. This could lead to premature
unloading of the ankle, but is not necessarily the case if the ankle is free to move.

To find a fit for the thrust torque as function of upper knee angle fτ6t(q6), we have to consider
the special boundary condition dfτ6t(0)/dq6 → ∞. The fit uses a square root to meet this
boundary condition. After an initial increase, τ6 reaches its maximum and goes down almost
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(a) Vertical CoM velocity ẏ versus d versus t.
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(b) Ankle torque τ4 versus d versus t.
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Figure 3-2: Effect of d on velocity and ankle torque. For all values of d, Skippy reaches the
end of the thrust phase (ẏ = 9 m s−1) approximately at tf : t = 0.1 s. For values d & 30 N, the
ankle suggests that it would prematurely unload during the thrust phase, as its calculated torque
crosses the cross-over torque τco.

linearly. A secondary, shifted square root was used and subtracted from the first square root
to obtain a nearly linear decent. The function is furthermore defined to start at fτ6t(0) = τ6,0:

fτ6t(q6) : τ6 = ud,1

√
180
π

(q6 − q6,0)− ud,2

(√
180
π

(q6 − q6,0 + qshift)−
√

180
π

qshift

)

The secondary square root is shifted with τshift = π
6 rad, approximately equal to the thrust

range of q6. ud,1 and ud,2 are two d-dependent constants which were determined using a least
square fit with τ6 that corresponds to a specific value of d.[i] Results of the fit function fτ6t(q6)
in relation to τ6 can be seen in figure 3-3a for d = 50 N.

(a) Fit function fτ6t(q6) compared with τ6.
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(b) Fit function fτ6t(t) compared with τ6.

0 2 4 6 8

·10−2

100

150

200

time [s]

τ 6
[N

]

τ6 (q4 locked)
fτ6t,d=50(t)

Figure 3-3: Two different fit functions for τ6 as function of q6 and t to compare with the desired
τ6, for d = 50 N. The fits fit well and meet the boundary conditions.

[i]We found ud,1 ≈ 0.83d − 0.96 and ud,2 ≈ 2.3d + 8.1.
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Similar to fy(t), τ6 as function of time took the shape of a 2nd order polynomial. We defined
the following fit for fτ6t(t), albeit less accurate than fτ6t(q6):

fτ6t(t) : τ6 = τ6,0 + u1 t + 2d u2
c

t− d u2
c2 t2 (3-5)

in which c = 0.1
3 s is the same time constant as in equation (3-4). u1 ≈ −208 is the slope of

the profile for d = 0 based on a least square fit with τ6. The maximum thrust torque τ6,max
is nearly linear to d. This observed linearity is embedded in equation (3-5) and the slope of
the linear relation is determined by u2 ≈ 0.83. Results of the fit function fτ6t(q6) in relation
to τ6 can be seen in figure 3-3b for d = 50 N. Both fits are satisfying for the full range of
d. However, the fits are unable to completely remove the observed discontinuity between the
thrust and steering phase. This problem is tackled in section 3-1-2 by introducing a fuzzy
transition between the thrust and steering torque.

3-1-2 Continuous fuzzy transition

This section aims to improve the knee torque profile defined in section 3-1-1 by introducing a
fuzzy transition between the thrust and steering torque. This fuzzy transition aims to smooth
the torque profile without worsening Skippy’s thrust and steering performance.

The parabolic thrust profile discussed in section 3-1-1 cannot fully remove the discontinuity
between the thrust and steering phase. The order of continuity would never exceed C0 even
if we would be able to exactly match the torque at the end of the thrust and beginning of
the steering phase. To smooth the final discontinuity between the thrust and steering phase,
a fuzzy transition between both torque profiles is used. The resulting torque profile fτ6(q, q̇)
is defined as follows

fτ6(q, q̇) : τ6 = fτ6t(q6) vt(q6) + fτ6s(q, q̇) vs(q6) (3-6)

Or, if fτ6t is defined as function of time, we have fτ6(q, q̇, t):

fτ6(q, q̇, t) : τ6 = fτ6t(t) vt(q6) + fτ6s(q, q̇) vs(q6) (3-7)

vt and vs are value functions as function of q6 that define the significance of fτ6t and fτ6s

for the fuzzy transition at q6,f . The value functions vt and vs are described by continuous
sigmoid functions. They are defined as follows, as function of arbitrary variable χ:

vt(χ) := 1− tanh (2 s (χ− χf ))
2 (3-8)

vs(χ) := 1 + tanh (2 s (χ− χf ))
2 (3-9)

The sigmoid function used in equations (3-8) and (3-9) is the hyperbolic tangent (tanh ). The
value functions have order of continuity C∞ and satisfy the following conditions:
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vt(χ) + vs(χ) = 1
0 < {vt(χ), vs(χ)} < 1
vt(χf ) = vs(χf ) = 0.5
lim

χ→∞
vt(χ) = lim

χ→∞
vs(−χ) = 0

lim
χ→∞

vt(−χ) = lim
χ→∞

vs(χ) = 1

s is the slope of the value function at χf and determines the fuzziness of the transition.
s → ∞ corresponds to a non-fuzzy transition and s = 0 to a 50-50 mix of both the thrust
and steering torque over the full range of χ.

Fuzzier transitions generally lead to profiles with lower derivatives that are more tractable.
However, fuzzy transitions could lead to undesired system behaviour, as it could impair
Skippy’s ability to hop high, to steer (control lift-off momenta) and to maintain grip. This is
investigated in section 3-1-3.

3-1-3 Results

We have investigated Skippy’s ability to hop high, steer and maintain grip for various values
of the parabolic offset force 0 < d < 80 N, fuzziness slope s and transition angle q6,f . Skippy
is able to do hops for all values of d, without worsening the performance. It was expected
that the ankle would prematurely deflect for values of d > 30 N, as the ankle torque crosses its
spring’s crossover torque τco during the simulations where the ankle was locked for d > 30 N.
However, this does not occur, as can be seen in figure 3-4a for d = 50 N. Skippy is able
to do steering for a large variety of s and q6,f as well. Decreasing s slightly decreases the
performance, but Skippy is still able to hop higher than 4 m. A value of s = 5 is used in
figure 3-4. q6,f is set to q6,f = 0.8 rad, but could be lowered to increase steering performance
and worsen hopping performance. The resulting torque profile with d = 50 N m, s = 5 and
q6,f = 0.8 rad is plotted in figure 3-4d. Momenta are plotted in figure 3-4b, from which can
be seen that we are still able to reach our target height and to do steering. Lastly, from
figure 3-4c can be seen that the fuzzy transition does not induce any slipping.

With an increasing set of valid torque profiles, we have to find new constraints to figure which
of these profiles are really feasible. The series-elastic drivetrain of Skippy is implemented in
section 3-2 which will constrain the reproducibility of a desired torque profile.

3-2 Driveline modelling

In section 3-1 we found a feasible set of actuator torque profiles τ6 with an admissible average
power input that allow Skippy to obtain desired lift-off momenta. The set is defined by the
ability to vary the parabolic offset force (d), the transition angle between thrust and steering
(q6,f ) and the corresponding fuzziness of this transition (s). Little can yet be said about
the capability of the motor to reproduce any of the torque profiles in the set, because an
important part of Skippy is still missing in the model. This part is the compliant and highly
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(d) τ6 versus q6
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Figure 3-4: Results of Skippy with parabolic and fuzzy thrust profile fτ6 with d = 50 N m, s = 5
and q6,f = 0.8 rad. The more feasible knee torque profile depicted in figure 3-4d still allows Skippy
to obtain desired lift-off momenta (figure 3-4b) without slipping (figure 3-4c). Notably, the ankle
spring does not prematurely unload (figure 3-4a), in contrast to predictions by figure 3-2b

geared transmission between motor rotor and knee joint, which introduces two additional
states and many new system parameters that complicate the model. This section expands
the model with linear actuation governed by closed-loop kinematics in section 3-2-1 and
the main (energy storage) spring and driveline inertia in section 3-2-2. A PD controller is
developed that takes care of the inverse dynamics of the driveline in section 3-2-3. Results
are discussed in section 3-2-4.

3-2-1 Linear actuation kinematics

To implement the driveline, two new bodies are introduced, together with fourteen new sys-
tem parameters. The bodies do not add new degrees of freedom to the system but instead
introduce new closed loop kinematics. This section describes the introduction of these bodies
in the expanded model, their system parameters and the updated loop closure function to
close the kinematic loop.
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32 Inverse dynamics approach

Model expansion

The model is expanded with two additional joints and bodies. The seventh and eight body
are called motor housing and quadriceps respectively. The seventh joint is a revolute joint
connecting the motor housing to the torso. The motor housing holds the motor and spindle
of the ball screw. The eighth joint is a prismatic joint connecting the quadriceps to the motor
housing. The quadriceps is a body that slides collinear to the motor housing axle and should
be connected to the top end of the extended lever. This is done by closing the kinematic loop
by adjusting the loop closure function γ(y) (equation (2-2)). See figure 3-5 for an overview
of the new system.

In the real mechanism, the quadriceps is connected via a spring-loaded prismatic joint to the
ball screw’s nut, which in turn is connected via a helical joint to the ball screw’s spindle, which
in turn is connected rigidly to the motor’s rotor, which in turn is connected via a revolute
joint to the motor’s stator and housing. However, it was decided not to model the nut or the
spindle and rotor explicitly, and instead simply connect the quadriceps directly to the motor
housing via an actuated prismatic joint. This simplification can be justified as follows:

• The nut has negligible inertia, and only a small velocity relative to the torso.
• The spindle and rotor spin very fast, and have a substantial effect on the development

of the thrust force. However, this effect can be taken into account in the calculation of
the thrust force. For the purpose of calculating the rigid-body dynamics, their inertias
can be added to the dynamic model as reflective terms. This is further elucidated in
section 3-2-2.[ii]

foot

leg

lever

lq

torso

quadriceps motor housing

lm

Q′

1,2
3

4

5

6

78Q

φm

φq

i
= x

y

Ψi

Figure 3-5: Zero configuration (q = 0) of Skippy including linear driveline. Bodies are identified
by name, and joints by number. This configuration does not satisfy the loop-closure constraint
because the points Q and Q′ do not coincide.

[ii]The rotating spindle and rotor furthermore introduce gyroscopic and inertial accelerations. These effects
have to be taken into account in a 3D version of Skippy. This thesis however considers a 2D version of Skippy
where out-of-plane forces are assumed to be opposed by constraint forces to keep Skippy in its 2D vertical
plane. The swivel bar is used to control Skippy in 3D where we do not have these constraint forces available.
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System parameters

The new bodies introduce the following fourteen new system parameters (frame coordinates
r and CoM coordinates c consist of two parameters each):

r7 = M = lm
[
c φm s φm

]
motor housing axle coordinates in Ψ6

r′
8 = Q′ = lq

[
− s φq c φq

]
quadriceps axle coordinates in Ψ′

5

r8 floating quadriceps axle coordinates in Ψ7

m7, c7, I7 mass, CoM coordinates and rotational inertia of the motor housing
m8, c8, I8 mass, CoM coordinates and rotational inertia of the quadriceps

Ψ′
5 is a coordinate frame embedded in the lever (identical orientation as Ψ5) but located at

the upper knee joint (at Ψ6) rather than the lower knee joint (at Ψ5). Q is a point at the
origin of Ψ8. Q′ coincides with the tip of the extended lever defined by r′

8. The real system
has a revolute joint between the quadriceps and lever that is located at Q. The loop closure
constraint is satisfied when Q coincides with Q′.

All inertias of the motor housing and quadriceps (four parameters) are set to zero and the
inertias of already existing bodies are unchanged[iii]. The coordinates c7 and c8 of the two
CoMs (four parameters) are thus meaningless as well. The elimination of these eight pa-
rameters simplifies our system. It also implies that the dynamic capabilities of this system
should be exactly the same as that of the previous one, which allows us to make more valid
comparisons between results of new and previous simulations.

Both the motor housing and quadriceps barely rotate with respect to the torso (i.e. q̈7 ≈ 0),
so their rotational inertia has little contribution. The quadriceps and spring are furthermore
very light, for which we also neglect their mass. The motor housing however is not light as it
houses a heavy motor, ball screw spindle, coupling and bearings. Nevertheless, its movement
with respect to the torso is negligible, so we have left its mass included in the torso’s mass. The
torso’s orientation is defined in such a way that the torso—modelled as a line—runs through
its own CoM. The position of the motor housing axle is defined to have a small positive
offset My = 5 cm from this line, because the mass of the swivel motor and bar—which will
be mounted below the main motor—will lower the CoM of the torso.

The horizontal motor housing axle coordinate is set at Mx = 32 cm. This implies that the
axle is located towards the end of Skippy’s torso, approximately 32 cm away from the knee
upper joint. The axle is placed towards the end of the torso for two reasons. Firstly, we
require space for the spindle and main spring between the motor housing and lever. Secondly,
more mass at the end of the torso is desirable to make high jumps. However, we cannot
place the motor housing at the very end of the torso because the motor and swivel bar also
require space (estimated 20 to 25 cm) behind the motor housing. The exact positioning of
the motor housing axle is not important because it will barely affect the kinematics as long
as it is not too close to the knee joint. As such, we will not be further concerned with tuning
these parameters in this chapter.

The value of r8 is trivial. The quadriceps is modelled as a horizontal prismatic joint collinear
to the motor housing axle, implying that r8,y = 0 and that we have a DoF in the direction of

[iii]Recall that the inertia of the torso is supposed to include the inertias of the motor and drive components
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r8,x. For aesthetic reasons, a horizontal offset r8,x = −Mx = −r7,x is defined to bring its zero
position closer to the top end of the lever to which it should be connected by the kinematic
loop closure function γ(y). The distance between the motor housing axle and quadriceps axle
is the driveline length xin = Mx − q8.

This leaves only two parameters, lq and φq (or r′
8,x and r′

8,y), which are considered most
important as they significantly affect the transmission ratio between the linear driveline and
the knee. The lever length lq is almost directly proportional to the transmission ratio, and
is initially set lq = 10 cm based on the primary calculations in section 2-1-3. For an effective
lever length of lq,e = 7 cm, a knee torque of τ6 = 200 N m would require a quadriceps force
(or nut force) of approximately τ8 = 2.9 kN, close to the maximum permissible absolute force
on the ball screw. The effective lever length is defined as the perpendicular (i.e. shortest)
distance between the screw rod axis and the knee upper joint (X6)[iv]. lq,e is a function of the
knee rotation and is maximally equal to lq when the lever is perpendicular to the screw rod
axis. φq influences the effective lever length as it is able to shift this function. Initially, we
choose φq = π

8 rad, which implies that the effective lever length is maximum approximately
halfway through the thrust phase, where it is able to transmit the highest torque to the knee
joint. The effective lever length becomes lower towards the end of the thrust phase and during
the steering phase, which allows for more speed (but less torque).

Loop closure

Joint positions q5, q6, q7 and q8 are all dependent on each other. Since we want to use the
quadriceps force τ8 as input force from now on, we redefine our independent position variables
y to exclude q6 and include q8:

y =
[
q1 q2 q3 q4 q8

]T
The loop closure function q = γ(y) is rewritten accordingly. The closed-loop kinematics
are still implemented explicitly and obtained through analytical calculations, which has the
advantage of quicker calculations (smaller system matrices to be integrated and inverted),
better accuracy and more robustness than implementing closed-loop kinematics implicitly, as
long as we do not cross any singularity. The mechanism is designed not to cross any singularity
in its useful RoM (0◦ ≤ φknee ≤ 180◦), because this would have devastating consequences
for the torque transferred through the knee joint. We have simplified the derivation of the
kinematic equations by making use of predefined loop closure functions that calculate the
kinematics of triangular mechanisms with sides a,b and c and corresponding opposite angles
α,β,γ, provided by R. Featherstone:

{α, β, γ, G, g} = Γ4(a, b, c, ȧ) (3-10)
{a, β, γ, G, g} = Γ4(α, b, c, α̇) (3-11)

The function either takes a variable side length a or variable angle α as independent position
variable, its time derivative and the lengths of the two static sides (b and c) as input. G and
g are a [3× 1] Jacobian matrix and [3× 1] convective acceleration vector, respectively, used

[iv]An effective lever length of lq,e = 7 cm for a lever with lq = 10 cm corresponds to an angle between the
lever and spindle of arcsin (7/10) ≈ π

4 rad
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to calculate the output derivatives.[v] These functions do all the trigonometric calculations,
which explains why one cannot find any (arc)sine or (arc)cosine in this section.

To derive the kinematics of this version of Skippy we require only one triangle loop closure
function. For the derivation of the kinematics of Skippy with a real four-bar linkage (rather
than a 1:1 gear ratio between q5 and q6), we require the usage of three triangle functions.
The first triangle (denoted41 ) is identical for the version of Skippy with and without the full
four-bar linkage. The triangle is defined by the variable length xin = Mx− q8 with ẋin = −q̇8
and static lengths lq and lm. The latter is the distance between the motor housing axle and
upper knee joint. We compute

{φ41 in, φ41 q, φ41 m, G41 , g41 } = Γ41 (xin, lq, lm, ẋin)

From which we can find the dependent positions variables

q7 = φm − φ41 q (3-12)
q6 = π/2− φ41 in − φm + φq (3-13)

Moreover, we still have q5 = q6 because of the 1:1 gear ratio. Their derivatives—together
with G (size [8 × 5]) and g (size [8 × 1])—can be obtained by making use of G41 , g41 and
equations (B-7) to (B-10).

Now that we have q̇ = Gẏ, we can find the transmission ratio between q6 and q8. Since q6 is
only dependent on q8, we only have one term in G that defines this transmission ratio:

q̇6 = G41 1q̇8

where G41 1 (first element of G41 ) is equal to the inverse of the transmission ratio R2, which
we define as follows:

R2 := ∂q8
∂q6

(3-14)

R2 is plotted in figure 3-6. If we assume a frictionless system with zero power loss in the
joints, we have that q̇6τ6 = q̇8τ8 and thus

τ8 = G41 1 τ6 = τ6
R2

(3-15)

Equation (3-15) allows us to directly compute the desired quadriceps force profile τ8 from the
thrust torque profiles defined for τ6 in section 3-1:

fτ8(q, q̇(, t)) : τ8 = G41 1(q8) fτ6(q, q̇(, t)) (3-16)

This new force profile should produce exactly the same results as those presented in sec-
tion 3-1-3, because the inertial properties have not been changed since the introduction of
the two new massless bodies (the motor housing and quadriceps). This fact has been used
as verification. The newly obtained nut thrust profile is plotted in figure 3-7, which indeed
leads to exactly the same dynamic behaviour as previously observed.

[v]See equations (B-7) to (B-10), where y = a and q = [α β γ]T for equation (3-10) and y = α and q = [a β γ]T
for equation (3-11)
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(a) Transmission ratio R2 = ∂q8/∂q6 versus q6
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Figure 3-6: Lever transmission ratio R2 as function of q6 and q8. The transmission ratio is
approximately constant during thrust and decreases during steering.
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Figure 3-7: τ8 for identical conditions as in figure 3-4d with identical dynamic system behaviour.
τ8 is the result from a kinematic mapping and is proportional to the torque the motor has to
deliver.

3-2-2 Spring and driveline inertia

Having defined the linear driveline in section 3-2-1, we have yet to add a spring and ball
screw model including inertia, which together with the electric motor form the series elastic
actuation (SEA). The SEA introduces a new body, which is the nut of the ball screw. This
section describes the implementation of the SEA and explains how the initial conditions of
the nut are determined.

The nut

Implementation of the SEA requires the introduction of an additional body. This body is the
ball screw’s nut. As mentioned in section 3-2-1, the nut is not modelled as an additional rigid
body because it is relatively light and slow. The shaft—consisting mainly of the motor rotor,
coupling and spindle—is directly geared to the nut and is also not modelled as an additional
body as its velocities with respect to the torso are negligible. It furthermore requires Skippy
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to be modelled as a 3D system, which blows up the model complexity. Instead, we model
the reflected mass of the shaft at a massless nut, connected to the massless main spring,
connected to the quadriceps axle.

Icoup + IspinIrot

nut
Fs Fs τ8 τ8 τ ′

8Fn

Tmech

Tout

Tout

Tn

xin

xn
xs

M Q

rotational

translational

Figure 3-8: 1D driveline model of Skippy: from motor rotor to quadriceps axle. Forces, torques
and displacements are drawn positive.

Driveline inertia

Consider the 1D driveline between the motor rotor (close to the motor housing axle) and
quadriceps axle in figure 3-8. The frictionless component of the generated electromotive torque
Tmech—also referred to as mechanical motor torque—acts via the motor rotor with rotational
inertia of Irot on the motor shaft with torque Tout. Tmech differs from the electromotive
force (emf) Temf in that the terminal friction torque is already subtracted. The shaft is
connected via the coupling with inertia Icoup to the spindle with inertia Ispin. The spindle
connects to the nut where rotational motion is transferred to linear motion and thus torque
Tn to nut force Fn. We have

Irot φ̈h = Tmech − Tout

(Icoup + Ispin) φ̈h = Tout + Tn

}
Ih φ̈h = Tmech + Tn (3-17)

Ih is the total shaft inertia Ih = Icoup+Ispin+Irot and φ̈h the entire shaft’s angular acceleration.
Note that in equation (3-17), Tn is defined to have the same sign as Tout on the spindle, which
corresponds to the positive directions drawn in figure 3-8.[vi]

For a non-accelerating system, all torques in the driveline are equal to each other. However,
they could start to deviate significantly when the system accelerates. Tn is proportional to
τ8 and Tmech is the actual input torque directly related to the mechanical power that the
motor delivers: Pmech = Tmech φ̇h. The motor shaft torque Tout is furthermore taken apart,
as its maximum absolute is interesting for the mechanical design of Skippy, e.g. for coupling
selection. Tmech is not necessarily similar to the torque transmitted through the shaft and is

[vi]Note that this is not conventional, but it was decided to do so for various practical reasons that are related
to the fact that the direction of positive xin and q8 are also opposite.
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thence not interesting for the mechanical design. Since Irot is by far the largest of all three
shaft inertias, Tout is going to be more similar to Tn than Tmech.

The transmission ratio R3 between the shaft’s angular velocity φ̇h and nut’s linear velocity
ẋn is

R3 = φ̇h

ẋn
= −2π

n
(3-18)

where n = 2 mm is the lead of the ball screw. We have φ̇h = R3ẋn and Fn = R3Tn. We can
rewrite equation (3-17) to

R2
3Ihẍn = Fn + R3Tmech (3-19)

= m
◦

hẍn = Fn + F
◦

mech = Fd (3-20)

where m
◦

h = R2
3Ih is the reflected mass of the shaft on the nut. It is not a real mass, but

it is experienced by the nut as inertia to be accelerated. Similarly, F
◦

mech = R3Tmech is not
a real force acting on the shaft. We use a halo (◦) to distinguish reflected terms from real
terms. Fd is the sum of Fn = Fs and F

◦
mech. The spring force Fs pulls the nut towards the

quadriceps axle, and the mechanical motor force F
◦

mech pushes the nut towards that axle. As
such, their sum Fd is effectively the force that accelerates the nut with mass m

◦
h towards the

quadriceps axle.

Inertias are taken from real components:

Icoup = 5.8 g cm2 coupling CPCX19-6-6 (Misumi, 2015)
Ispin = 7.8 g cm2 ball screw 2412 M8 n2 (Steinmeyer, 2015)
Irot = 79.2 g cm2 rotor of motor RE35 90 W 24 V (Maxon Motor, 2014)

Their sum is Ih = 92.8 g cm2, which corresponds to a reflected mass of m
◦

h = 91.6 kg. The
rotor inertia Irot is most prominent. The coupling is relatively small and it is selected on
(minimal) weight. The coupling is rated to transmit a continuous torque of 1.0 N m. This
value corresponds to the maximum permissible absolute torque on the nut, calculated from the
maximum permissible absolute axial force on the ball screw of Fn,max = 3.1 kN (Tn = Fn/R3 ≈
1.0 N m). Moreover, the stall torque of the motor at the nominal voltage is 1.2 N m > 1.0 N m,
which is a torque the motor shaft is at least able to transmit. The maximum transmissible
torque is likely even higher, although not specified by Maxon. Stepping up to a higher coupling
can be done if this appears to be necessary from dynamic simulations. This would slightly
increase the weight and rotational inertia of the driveline.

Main spring

The nut connects to the main spring with force Fs and the spring to the quadriceps axle:

Fn = Fs = τ8 (3-21)

The spring force Fs is only a function of its elongation xs, if we assume that it is purely
elastic. The elongation of the spring is

xs = xin − xn = Mx − q8 − xn (3-22)
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For the spring profile fs(xs) we initially assume a linear profile fs,lin(xs) with rest length lz
and stiffness k:

fs,lin(xs) : Fs = k (xs − lz) (3-23)

We also define a simple regressive spring profile, since we eventually have a desire for one
(section 2-1-3), where the spring stiffness is low during the thrust phase and high during
balancing and the steering phase. The simplest regressive profile is arguably a bilinear spring
profile:

fs,bilin(xs) : Fs =
{

k1 (xs − lz) xs ≤ lz + lbi

k2 (xs − lbi − lz) + k1 lbi xs > lz + lbi

(3-24)

in which k1 is the first spring constant and k2 the second spring constant, with a transition
between the two at xs = lz + lbi. For a regressive spring profile, we have that k2 < k1.
Note furthermore that equation (3-24) has continuity C0, so we can only differentiate it once.
Combining equations (3-20) to (3-22) and Skippy itself, we obtain the diagram depicted in
figure 3-9.

Skippy

F
◦

mech

+

+
m
◦−1

h

∫∫ +

−
spring

Fd ẍn xn

xs

τ8

Fs

xin

Fn

Driveline

Figure 3-9: Block diagram of driveline in Skippy.

Initial conditions

The two new states require two new initial conditions: the initial nut position xn,0 and velocity
ẋn,0. The initial conditions are chosen such that the initial desired thrust force fτ8t,0 and its
time derivative ḟτ8t,0 correspond to τ8,0 and τ̇8,0. For this, we have to compute the initial
spring elongation xs,0 and initial driveline length xin,0

xs,0 = f−1
s,0 = f−1

s (fτ8t,0)
xin,0 = Mx − q8,0

xn,0 = xin,0 − xs,0

xn,0 = Mx − q8,0 − f−1
s (fτ8t,0) (3-25)

with xs = f−1
s (Fs) the inverse spring function. For the nut velocity we calculate:

ẋs,0 = ∂xs

∂fs,0
τ̇8 = ∂xs

∂fs(xs,0) ḟτ8t,0

ẋin,0 = −q̇8,0

ẋn,0 = ẋin,0 − ẋs,0

 ẋn,0 = −q̇8,0 −
∂xs

∂fs(xs,0) ḟτ8t,0 (3-26)

The initial nut velocity calculated in equation (3-26) assumes zero initial shaft acceleration
φ̈h = 0, which is not required, but a valid and reasonable assumption.
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With the initial nut position defined by equation (3-25), the spring’s rest length lz in equa-
tions (3-23) and (3-24) has no physical importance (it would only shift xin,0 and can hence
be used for aesthetic reasons). The stiffness k of a linear spring is predetermined if the initial
spring force and initial potential energy storage are known. The required stiffness for a linear
spring is then klin : k = F 2

s,0/(2Es,0) = 32.15 kN m−1, given an initial amount of available
spring energy Es,0 = 55 J and force Fs,0 = τ8,0 ≈ 1.9 kN. The spring is going to have a
weakening profile eventually. As such, for the steering profile we will have a spring stiffness
k > klin and for the thrust profile k < klin. Correspondingly, for the bilinear spring profile
we have k1 > klin and k2 < klin, but their values are not determined.
Fs,0 is a function of the desired average and initial vertical thrust force Fy,0 = 200 N and
selected system parameters, e.g. lever length. If one of these variables is changed, the max-
imum spring stiffness of the thrust phase klin changes as well. For instance, a shorter lever
length requires a higher spring stiffness.
Es,0 is based on an estimate of the amount of energy that we have stored in the spring at
t = 0. This is all the energy pumped in the spring during the landing phase. This amount of
energy is roughly equal to

Es,0 ≈ Epre + Wmech,lp + ∆Ep,g − Ep,a,0 (3-27)

ignoring heat losses and rotational kinetic energy. Epre = 40 J is the amount of available
energy from the previous hop, see sections 2-1-2 and 2-1-5. Wmech,lp is the amount of work
the motor is expected to do during the landing phase. This is estimated at Wmech,lp = 15 J,
which is approximately a third of the total work the motor is required to do during the
stance phase, and thus half the work the motor is required to do during the thrust phase.
∆Ep,g = mg∆y = 2×9.81×0.6 = 11.8 J is the potential energy built during the stroke, where
Skippy’s CoM travels approximately ∆y = 0.6 m during the launch phase. Ep,a,0 = 10.6 J is
the energy initially stored in the ankle spring, which is compressed, obtained by integrating
equation (2-3) over q4.

3-2-3 Inverse dynamics control

With the series elastic driveline defined in section 3-2-2, the quadriceps force τ8 is no longer
the input force. Instead, the mechanical motor torque Tmech (or F

◦
mech) is. This section

describes how the motor torque is calculated to approximate a desired quadriceps force τ8,
such as the quadriceps force depicted in figure 3-7.
Having defined the new compliant driveline and its initial conditions, one could firstly try
to set the new input to Tmech = −fτ8 defined in equation (3-16). Initially this works out
well due to the initial nut conditions defined in section 3-2-2. However, τ8 starts to diverge
significantly from fτ8 because of the newly introduced inertia and compliance in the driveline.
The overall performance of Skippy deteriorates. Inverse dynamics calculations are required,
which calculate the required input torque Tmech to make τ8 track the desired fτ8. Directly
computing Tmech from fτ8 through the 1D driveline would require double differentiation,
which could make Tmech unnecessarily aggressive and noisy. Instead, a simple controller is
developed that makes τ8 track fτ8 approximately.
We know from basic control theory that a simple mass–spring system depicted in figure 3-9
can be controlled with a simple PD controller (Franklin et al., 2010), assuming that the
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external input xin = Mx− q8 fed back from Skippy’s main system is unable to destabilize the
system. The integration of the PD controller in the system is depicted in figure 3-10.

Skippy

fτ8
−

+
PD

F ′
d

m
◦−1

h

∫∫ +

−
spring

Fd

F
◦

mech

ẍn xn

xs

τ8

Fs

xin

Fn

+

−

Driveline

Figure 3-10: Block diagram of driveline with simple PD control in Skippy.

The derivative of the input for the PD is derived analytically to minimize the sensitivity for
noise. We have Ḟd = Ḟn − ḟτ8. The time derivative of the nut force Ḟn = Ḟs is obtained as
follows:

ḟs(xs, ẋs) = ∂fs(xs)
∂xs

ẋs

Calculating the time derivative of the desired nut force (or quadriceps force) profile fτ8 in
equation (3-16) analytically is a tedious task because of the complicated steering strategy
calculations incorporated in equations (3-6) and (3-7). Irrespective of what exactly we want
to do during steering, τ8 has to drop significantly and will be around zero. For this reason,
we simplify our input profile by temporarily setting the steering profile to either zero or up
to a 2nd degree polynomial around zero, as function of q6: fτ6s(q6). We furthermore use the
desired thrust torque profile as function of time fτ6t(t) for its differentiability. Equation (3-16)
becomes:

fτ8(q6, q8, t) : τ8 = G41 1(q8) fτ6(q6, t)
= G41 1(q8) (fτ6t(t) vt(q6) + fτ6s(q6) vs(q6)) (3-28)

Differentiating equation (3-28) to obtain ḟτ8 requires application of the product and chain
rule for differentiation and leads to a series of terms that we all have available.
The controller is tuned while being offline. This means that its output τ8 is not fed back
to Skippy and that its external input q8 is only a function of time, taken from the previous
simulation where τ8 = fτ8. The controller gains are tuned for multiple spring stiffnesses
and made stiffness-dependent with the aim of making it work for non-linear springs. The
controller is brought online after it is tuned. The corresponding motor torque Tmech = F

◦
mech

was then calculated backwards from the output of the PD-controller F ′
d: F
◦

mech = Fn − F ′d,
which is also depicted in figure 3-10.

3-2-4 Results

The simulation including closed-loop driveline dynamics and PD controller is run for various
profile parameters d, s and q6,f and spring stiffnesses. The controller is able to generate a
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force τ8 that follows the desired fτ8 well for the full set of profiles and a large range of spring
stiffnesses, as can be seen in figure 3-11, which shows the results for d = 50 N and s = 5,
q6,f = 0.8 rad and a linear spring with klin : k = 32.15 N m−1. However, we also observe that
Tmech is going in a frenzy of sways in order to generate the desired torque profile. A change
of the thrust profile and spring parameters have a major effect on Tmech, from which we can
conclude that the input is sensitive to the desired output. Some sets of parameters could
lead to reasonable results up to the steering phase, such as those depicted in figure 3-11. The
thrust profile chosen in figure 3-11 is not aggressive: d is low, the steering is simplified to a
constant (zero torque) and the transition between thrust and steering is very fuzzy. Yet, the
system is exceeding most of its capabilities. These include the following observations, among
other exceedances:

• The nut exceeds velocities that are more than an order of magnitude higher than the
maximum permissible absolute ẋn,max = 0.2 m s−1 and the no-load speed of the motor.
• The axial force in the spindle exceeds the maximum permissible absolute Fn,max =

3.1 kN.
• The motor is required to deliver more mechanical power Pmech = F

◦
mechẋn than the

approximately 320 W it is capable of delivering at optimal rotational velocity, which is
at approximately ẋn = 14.3 cm s−1.

The PD-controller was partially introduced to have control over the aggressiveness on the
computation of Tmech. As such, several attempts were done to lower the controller gains to
make Tmech less aggressive, but this also made fτ8 insufficiently accurately tracked.

In summary, if the motor is supposed to strictly reproduce a master curve (fτ8), then its
calculated torque will be too sensitive to a change of that master curve. If the aggressiveness
of the controller is reduced so as to purge the extreme sensitivity, the reproducibility of the
master curve is so defective that there appears no point in defining a master curve in the first
place.

The reason for high sensitivity of Tmech to changes of fτ8 is primarily attributed to the low
spring stiffness and secondarily to high reflected mass m

◦
h = 92 kg, which owes its value mainly

to the RE35 90 W 24 V Maxon motor mentioned in section 2-1-3. Changing the inertia of
the motor to that of a lighter Maxon motor (RE30 60 W 24 V)—reducing the inertia nearly
by a factor of 2—did improve the results, but not sufficiently so. The low spring stiffness is
especially a problem during the steering phase, during which it should be higher. Increasing
the spring stiffness during the steering reduces sensitivity, but it brings the nut velocity closer
to the high joint velocity q̇8 (also plotted in figure 3-11), which nevertheless forces the nut to
travel at velocities that exceed its maximum velocity by far. It is cumbersome to find a set
of parameters for the launch profile to be viable due to all system limitations and the huge
sensitivity of the motor torque command on changes of the desired knee torque profile.

Concluding remarks

This chapter works to a more realistic model of Skippy that includes its series elastic drive-
line, which imposes limitations on the knee torque command profile. Towards a more realistic
design, pre-defined knee torque profiles are devised that are able to comply with a series
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elastic driveline and permit the actuator to do positive work throughout most of the stance
phase, without impairing Skippy’s ability to jump and steer. These torque profiles take
the shape of parabolae and have a continuous fuzzy transition between thrust and steering
phase. The implementation of the series elastic driveline, however, has shown that the repro-
ducibility of these torques is nonetheless disappointing. The calculated motor torques and
shaft velocities—which were calculated correctly by a successful and simple PD controller
responsible for inverse dynamics—turned out to be too sensitive (due to the relatively low
spring stiffness) and violated many of the physical limitations (e.g. limited nut velocity). It
is concluded that optimizing for the sensitive motor torque command Tmech is an inefficient
approach.

A different strategy is sought in chapter 4, where we initially impose a feedforward torque on
Tmech and then proceed to apply constraints to this torque to cope with all the constraints of
Skippy.
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Figure 3-11: Results of Skippy including series-elastic driveline. The controller works well, as
it reproduces the torque command fτ8 at τ8. However, the required input torque Tmech is too
sensitive to the required profile and not reproducible in reality. The nut velocity is also exceeding
its maximum permissible velocity by far.
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Chapter 4

Feedforward approach

In chapter 3 it was found that working towards an optimization from a set of usable thrust
profiles is inefficacious. This chapter uses a feedforward approach to find a viable thrust strat-
egy, using the model of Skippy defined in section 3-2 including driveline dynamics depicted
in figure 3-9. In section 4-1 we start by feeding a simple force profile directly to F

◦
mech. In

sections 4-2 and 4-3 we cope with encountered problems by applying (electrical and velocity)
saturations that take physical limitations of the system into account. In section 4-4 the model
is expanded with ball screw friction, and an an analysis on energy flow is introduced. The
saturations and energy analysis help us in understanding the limitations and possibilities of
Skippy, which are subsequently used in section 4-5 to analyse Skippy’s ability to do steering.
Each of the saturations and the requirement to do steering result in a decrease of Skippy’s
jumping performance. Finally, section 4-6 focusses on (energy-based) system improvements
that result in an improvement of Skippy’s jumping and steering performance.

4-1 Applying rotor torques

This section describes the exercise of feeding a simple mechanical motor torque command
directly to the motor rotor, and analyses the thrust performance and limitations of doing so.

A constant motor torque is applied throughout the entire thrust phase with the purpose
of observing Skippy’s behaviour. The primary focus is the thrust phase. The input force
command fmech,c : F

◦
mech lasts till t = 0.1 s after which it drops to zero, which is when we

would approximately enter the steering phase. Essentially, we are redoing what we have
initially tried in section 3-2-3 but with a simpler profile than fτ8 defined in section 3-1 and
more importantly: without the aim of reproducing that profile at τ8.

The initial conditions q0 and q̇0 are still identical to the ones used in section 2-2 and the nut
position is still calculated according to equation (3-25), corresponding to an initial thrust of
Fy = 200 N. However, the nut velocity is initially set to its maximum, xn = −0.2 m s−1, and
not calculated according to equation (3-26), where it was calculated to obtain a desired time
derivative of the initial desired thrust force. The nut velocity calculated in equation (3-26)
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46 Feedforward approach

is extremely sensitive for the initial desired thrust force rate due to the relatively low spring
stiffness, whereas it is unknown what the ideal initial thrust force rate is (as we found many
working force rates in section 3-1-3).
With a primary focus on the thrust phase, the initial simulations use a linear spring. The
spring is considered floating, i.e. we are not concerned with the initial amount of energy Es,0
stored in the spring. This allows us to experiment with different spring stiffnesses k ≤ klin '
32.15 kN m−1, see section 3-2-2, with an initial estimate k = klin.
Figure 4-1 shows the results corresponding to this analysis for a spring stiffness of klin : k =
F 2

s,0/(2Es,0) = 32.15 kN m−1 and input force command of F
◦

mech = −τ8,0 = −1.9 kN = fs,0,
i.e.

fc,mech : F
◦

mech =
{
−τ8,0 if t ≤ 0.1 s

0 if t > 0.1 s
(4-1)
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Figure 4-1: Force and velocity results of Skippy for a simple feedforward motor torque command
fc,mech : Tmech on the motor torque. Results are comparable to those in figure 3-11, but driveline
behaviour is less aggressive. Nonetheless, the system is still required to enter physically impossible
states, as (for one) the nut is being accelerated beyond its maximum permissible absolute velocity
of ẋn,max = 0.2 m s−1

The jumping height corresponding to this simulation is 4.4 m, without the necessity of lowering
the initial spring stiffness. Conveniently, the main spring returns to rest length at lift-off,
releasing all of its energy. This is not always the case, as has been confirmed from similar
simulations with different system parameters, and as such is considered a lucky coincidence.
Figure 4-1 furthermore shows that the nut velocity is approximately constant throughout
the first part of the thrust phase, which is a nice result and is not entirely coincidental.
The spring is noticeably compliant at k = 32 kN m−1 and it is approaching its maximum
elongation, suggesting that the force derivative is low. If F

◦
mech is then set to the initial

spring force, then the nut is not being accelerated for a substantial time. Furthermore, the
transmission ratio during the thrust phase is approximately constant (see figure 3-6), which
contributes to the nut velocity being approximately constant. From additional simulations,
it was confirmed that a higher input force F

◦
mech leads to an initial linear increase of the nut

velocity, and a lower input force initially decelerates the nut.
However, we also make the following problematic observations:
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• The nut starts to accelerate eventually and it exceeds its maximum permissible absolute
velocity of ẋn,max = 0.2 m s−1 by at least a factor of two.
• Due to the increasing nut velocity and constant thrust force, it is evident that more

power is drawn at the end of the thrust phase. The amount of power drawn at the end
of the thrust phase of P > 1000 W is not realisable for the RE35 Maxon motor, which
is able to deliver up to approximately 320 W at 27 V and that is if the motor is running
at its optimal velocity.

Furthermore, the results confirm that momenta are barely changed during the steering phase.
This is due to the low spring stiffness during the steering phase and zero motor torque. The
steering phase requires the thrust force to be lowered more abruptly, which is not achievable
with a low spring stiffness. This supports the idea of using a weakening spring. Decreasing
the spring stiffness klin : k lead to force profiles of T

◦
mech that are more flattened, and to

Skippy jumping higher. This observation makes perfect sense, because we are assuming more
initial potential energy stored in Skippy. It is advised not to decrease the spring stiffness
more than necessary, because this reduces the control that we have over the nut force profile.

Following the observation that the motor is delivering more mechanical power than it is
physically capable of, the next logical step is implementing saturation of motor capabilities.

4-2 Electrical limitations

The goal of this section is to devise a saturation that takes account for the maximum amount
of power the motor can deliver. The power that is drawn from the motor in section 4-1 exceeds
the maximum amount of power the motor is capable of delivering. The maximum power a
motor can deliver for a given maximum voltage is dependent on the velocity of the shaft and
the maximum armature voltage or current. Since the nut velocity is not constant, the power
saturation is to be implemented as a dynamic saturation. To implement the power saturation
correctly, the electric circuit of the motor has to be modelled up to an extent, which is done
in section 4-2-1. Voltage and current saturation are then applied in sections 4-2-2 and 4-2-3
respectively, which indirectly induce mechanical power saturation of the motor. The results
of the saturations on Skippy’s jumping performance are discussed in section 4-2-4.

4-2-1 Electric circuit modelling

The electric circuit of the motor’s armature is modelled with terminal resistance R, but with-
out terminal inductance L. The inductance introduces an additional state and complicates
the model. With a time constant of a mere L/R = 0.119 mH/0.611 Ω ≈ 0.2 ms for the 90W
Maxon motor, it was decided to neglect its presence. To produce Tmech, one requires the
following current J [i] assuming that the no-load current Jz creates a constant friction torque,
only affected by the sign of the rotor velocity:

J = Tmech

cT
+ sgn

(
φ̇h

)
Jz (4-2)

[i]J is used for current rather than I to prevent confusion with rotational inertias

Master of Science Thesis J.J.M. Driessen



48 Feedforward approach

cT is the torque constant. The electromotive force Temf includes the friction torque and
could be calculated as Temf = JcT . This value is not of interest now but could be useful for
analysing heat dissipation later. Multiply the current with the motor’s terminal resistance R
and one obtains the resistor voltage Ur:

Ur = J R (4-3)

The back emf voltage Uemf can be calculated from the angular shaft velocity φ̇h:

Uemf = 1
cv

φ̇h = cT φ̇h (4-4)

cv = 1/cT is the speed constant. The armature voltage U is then the sum of the two:

U = Uemf + Ur (4-5)

The required electrical power Pel can be computed by taking the product of the voltage and
current with a minimum of zero, which is consistent with the assumption that the motor
driver electronics is non-regenerative, meaning that if the motor is performing negative work,
and therefore operating as a dynamo, then this work is simply lost (as heat) rather than being
fed back into the battery.

Pel = min (U J, 0) (4-6)

Pel is the unidirectional power flow from the motor driver circuit to the motor armature
circuit. Power losses in the motor driver circuit are not modelled explicitly, but are instead
accounted for implicitly by the assumption that the maximum voltage available to the motor
is less than the voltage available from the batteries. As such, we consider work done on the
system as determined by electricity that flows through the circuit of the motor’s armature,
where the maximum voltage input is limited to be lower than the theoretical maximum voltage
available from the batteries.

4-2-2 Current saturation

The goal of this section is to introduce a simple current saturation based on the model of
the electric circuit of the motor’s armature described in section 4-2-1. High currents can
destroy a motor. The permanent magnet of the DC motor will be demagnetized by the
magnetic field caused by the instantaneous current if that current is too high. The limit
beyond which this occurs is not specified in data sheets, so we use the stall current as a
proxy for the magnetic limit current. Secondly, sustained high currents can also destroy a
motor by overheating. Heat generation in the motor is directly related to current through
Wheat = J2 R. Applying current saturation can thus directly be used to control overheating
to an extent. The maximum current is furthermore limited by the motor controller and by
the maximum discharge rate of the batteries.

Note that current and voltage are dependent on each other through the shaft velocity. Chang-
ing one value requires recalculation of the other. The armature current J is therefore calcu-
lated twice, once before voltage saturation in section 4-2-3 and once after voltage saturation.
The simplest way of implementing current saturation is by considering an independent maxi-
mum current before voltage saturation—i.e. at the current calculated in equation (4-2)—such
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that we do not have to recalculate voltage. In theory, this implies that the current can exceed
its maximum nonetheless after it is recalculated due to the voltage saturation. However, this
can only happen if the motor is doing near maximum negative work, which is a scenario to
be avoided anyway.

The maximum current used for saturation is the stall current Js for nominal voltage, for we
know that the motor is capable of handling these currents for a short time interval. The
stall currents for the Maxon RE35 90 W 24 V and RE30 60 W 24 V motors are 41.1 A and
39.3 A respectively. This limit is also within the maximum current that can be drawn from
the batteries, Jb,max, which is determined by the battery capacity Qb and discharge rate Cb.
For the lithium-polymer batteries that we are considering to use, we have Jb,max = Qb Cb =
1.3 A h×35 h−1 = 45.5 A. The current saturation is not triggered for current simulations; the
highest current observed for current simulations is approximately 20 A.

The current is furthermore not limited due to possible overheating, because we assume only
short bursts of high power. The stance phase takes approximately ton = 0.2 s, whereas the
thermal time constant of the winding of the RE35 90 W 24 V is 30.2 s. The flight phase lasts
approximately toff = 1.8 s, during which the motor is not intensively loaded. Skippy can
reach a height of 4 m in a few hops, in a time that is much shorter than the thermal time
constant. Note however that Skippy is not capable of hopping to 4 m indefinitely (that is,
until battery depletion) with a duty cycle of approximately ηon = 0.2/(0.2 + 1.8) = 10%.
The maximum duty current Ion for an electric motor with a continuous duty cycle of ηon and
nominal current IN (maximum continuous current) is approximately

Ion = IN

√
η−1

on

according to the Maxon catalogue (Maxon Motor, 2014). For IN = 3.62 A (RE35 90 W
24 V) and ηon = 10%, we have that Ion = 11.4 A, which is lower than the measured peak of
I = 20 A in current simulations, and thus suggests that Skippy cannot maintain an indefinite
4 m jumping gait.

4-2-3 Voltage saturation

In addition to current saturation described in section 4-2-2, available voltage is also limited, for
which we require another saturation. The static voltage saturation and variable nut velocity
provide a dynamic saturation on the mechanical motor power. The armature voltage, U , is
subject to the constraint −Umax ≤ U ≤ Umax, where Umax is the maximum voltage at the
output of the motor driver electronics. Umax is set at 90% of the batteries’ total voltage (which
is pessimistic). With 2 × 4-cell lithium-polymer batteries of 3.7 V per cell (as mentioned in
section 2-1-3), this equates to Umax = 26.64 V ' 27 V. It is expected that we are able to draw
slightly more voltage from the batteries in reality.

Given that the rotational velocity φ̇h cannot be changed instantaneously, we can compute the
new corresponding current and torque using equations (4-2) to (4-5):

J = U − Uemf

R
(4-7)

Tmech = JcT − sgn
(
φ̇h

)
JzcT (4-8)
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It has been explained in section 4-2-2 that voltage saturation is applied after current satura-
tion, for which the current is required to be recalculated after voltage saturation.

4-2-4 Results

Having included the voltage and current saturation, we perform the same simulation as in
section 4-1. Figure 4-2 shows that the torque is heavily saturated. The saturation shows that
that the motor torque is primarily ruled by what the motor is capable of delivering, rather
than being determined by the constant torque command. The result is a big improvement,
because it shows that the torque command used previously is impractical, and the behaviour
now is a lot closer to being feasible. The saturated torque in turn affects the nut velocity and
momentum build-up. As a consequence, Skippy jumps lower than previously at 3.89 m.

During the thrust phase, the torque is slightly not saturated during 0.018 < t < 0.035 s, where
the voltage is slightly lower than its maximum. In fact, there seems to be no reason not to
use maximum voltage during the thrust phase, whereas higher voltage corresponds to more
power. As such, in future simulations we base our thrust phase on feedforward maximum
voltage. This is effectively done by increasing fc,mech for t ≤ 0.1 s in equation (4-1) up to
F
◦

mech = −3000 N, which is also the maximum force that can be transmitted through the ball
screw. For this particular simulation, this action led to no significant change of the jumping
height.

3.89 m is slightly below the target height of 4 m, but this is not very problematic. A bigger
concern is the nut velocity, which—even though reduced—is still being pushed beyond its
maximum velocity. The nut velocity exceeds 0.20 m s−1 before the end of the thrust phase,
reaching 0.24 m s−1 at t = 0.1 s after which Tmech drops to zero, causing the nut to decelerate.
The nut velocity can be lowered by lowering the motor torque. A nut velocity saturator is
developed in section 4-3-1 based on this principle.

An additional simulation has been done where Tmech is not dropped to zero at t = 0.1 s, but
where it is held constant until lift-off at t ' 0.12 s. The nut reaches an even higher velocity
of 0.28 m s−1 at lift-off.

4-3 Velocity limitations

In addition to voltage and current saturation implemented in section 4-2, nut velocity satura-
tion is implemented to prevent the system from obtaining non-feasible velocities. The system
knows a few other velocity limitations, e.g. those of the thrust bearings holding the spindle.
Since their acceptable velocities are much higher than that of the ball screw, there is no need
to take them into account. The implemented nut velocity saturation is best described as a pro-
portional sliding mode controller, where the admissible nut acceleration is cut short the closer
the nut velocity approaches its maximum permissible absolute velocity ẋn,max = 0.2 m s−1, as
further explained in section 4-3-1. The results of the hopping performance with the velocity
saturation (in cooperation with the electrical saturation) are discussed in section 4-3-2.
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Figure 4-2: Force and velocity results of Skippy with electrical saturation. (command) refers to
the non-saturated torque command imposed on the motor torque (equation (4-1)) and (e sat)
refers to the electrical (current and voltage) saturation of that torque.

4-3-1 Nut velocity saturation

The goal of this section is to devise and implement saturation that prevents the nut from being
accelerated beyond its acceptable velocity. The nut velocity can be controlled by imposing an
acceleration on the nut. From equation (3-20) we have that Fs + F

◦
mech = Fd is proportional

to the nut acceleration. Instantaneously, Fs is a given since it is a function of only the spring
length xs. Dynamic saturation is applied on F

◦
mech, based on an acceptable value for Fd, Fd,a,

to limit the nut acceleration when it approaches its maximum permissible absolute velocity
of ẋn,max = 0.2 m s−1, and to decelerate the nut when it exceeds this maximum velocity. We
have that Fd,min < Fd,a < Fd,max, where Fd,min and Fd,max are dynamic. This dynamic
saturation is implemented as follows and takes the shape of a sliding P-controller:

F
◦

mech = median

kn(ẋn − ẋn,max)︸ ︷︷ ︸
Fd,min

−Fs, F
◦

mech, kn(ẋn − ẋn,min)︸ ︷︷ ︸
Fd,max

−Fs

 (4-9)

in which ẋn,min = −ẋn,max = −0.2 m s−1. kn is a gain that determines the aggressiveness of
the saturator. If the gain is too low, then too much valuable nut velocity will be sacrificed. If
it is too high, then the integration will take too many unnecessary steps due to a micro-wobble
around the maximum nut velocity. The gain is set to kn = −100000. This implies, for instance,
that at ẋn = 0.17 m s−1 the nut can still be pushed up to Fd = 3000 N (approximately the
maximum force that can be transmitted), linearly decreasing to Fd = 0 N at ẋn = 0.2 m s−1

(zero acceleration) and Fd = −3000 N at ẋn = 0.23 m s−1 (forced deceleration).

The nut velocity saturation is implemented before the electrical saturations. The nut velocity
saturation feeds the saturated torque to the current saturator and then velocity saturator,
after which the current is recalculated.
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Figure 4-3: Force and velocity results of Skippy with combined nut velocity saturation and
electrical saturation on the motor torque. Within limitations of the motor and nut velocity, Skippy
is still able to jump up to reasonable heights. (command), (ẋn sat) and (e+ẋn sat) denote the
sequential saturation steps on the motor torque, where (command) is the non-saturated torque
command fc,mech, and (ẋn sat) and (e+ẋn sat) denote the first (nut velocity) and second
(electrical) step of saturation respectively.

4-3-2 Results

With the nut velocity saturation and electric saturations implemented, results of the otherwise
identical simulations in section 4-1 are displayed in figure 4-3. Skippy’s jumping height has
further reduced to 3.87 m, which is still not a major concern. However, heat generation due
to friction is yet to be implemented, which likely reduces the jumping height.

Figure 4-3 shows that the nut velocity saturation is satisfactory, as the nut is not accelerated
beyond its maximum permissible absolute velocity ẋn,max = 0.2 m s−1. Moreover, the voltage
and current saturations do not interfere with the nut velocity saturation and stack well.

The forces in the driveline are also still within bounds. The nut force Fn does not approach
the maximum permissible absolute axial ball screw force of Fn,max = 3.1 kN, as can be seen
in figure 4-3, which shows a maximum absolute of |Fn| = |τ8| ≈ 2.0 kN. Moreover, the motor
shaft torque Tout (see equation (3-17)) does not exceed the desired maximum of 1.0 N m, as
can be seen in figure 4-4, where the maximum absolute is Tout ≈ 0.6 N m.

It is concluded that the nut velocity and electrical saturators work remarkably well. They
allow us to experiment with Skippy more efficiently, as the two most important of Skippy’s
many physical limitations are taken into account. It is noteworthy that the torque profile is
primarily dominated by the saturations. It emphasizes that fitting existing sets of profiles as
attempted in chapter 3 is an inefficacious and likely unproductive approach.

Achieving decent jumping with viable voltages, currents, nut velocities and forces in the
driveline provides a warrant for proceeding to analyse other limitations and requirements
of Skippy. In subsequent sections, we include mechanical heat generation due to friction in
section 4-4-1 and we analyse steering performance in section 4-5. The jumping height, which
has thus far been reduced to 3.87 m, may be further reduced due to mechanical friction.
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Figure 4-4: Motor shaft torque Tout, experienced by the coupling. The torque is of interest for
coupling selection for the mechanical design. Preferably, |Tout| < 1 N m

4-4 Energy analysis

This section looks into system energy of Skippy. Ball screw friction is modelled in section 4-4-1,
which converts useful kinetic energy to useless heat, and thus likely further reduces Skippy’s
jump height. In addition, an energy flow analysis is introduced in section 4-4-2.

Mechanical friction is to be included to obtain more realistic and accurate simulations. The
friction torque of the motor is already taken into account by computations in this chapter
(section 4-2-1). Ball screw friction is one of the other mechanical sources of heat loss, treated in
section 4-4-1. Additional sources of mechanical friction include joints and passive elements.
All joints are borne by ball and needle bearings that cause little friction, so this source
of friction is neglected in the model. Depending on the type of spring elements used, the
significance of the friction and its friction model are different. It is yet unknown which type
of spring elements are going to be used. Moreover, the fact that real springs cannot be purely
elastic has been taken into account in the design constraint that only 50% of the necessary
energy to perform a 4 m hop can be retrieved from the previous hop (see section 2-1-5). As
such, we will focus only on ball screw friction for the moment.

Subsequently to the introduction of ball screw friction, an energy flow analysis is introduced
in section 4-4-2. The analysis is a response to the increased complexity of Skippy’s model.
It serves as a validity check for our simulations and it aims to improve our understanding of
system behaviour. The effect of the ball screw friction on the jumping height is also shortly
discussed in this section.

4-4-1 Ball screw friction

This section describes the friction model of the ball screw that is used in Skippy. In order
to devise a valid friction model, it is essential to have a basic understanding of the contact
behaviour of balls between the nut and spindle of the ball screw.

As mentioned in section 2-1-3, the ball screw used for Skippy is a 4-point contact ball screw.
Furthermore, the channels where the balls roll are helical. From these two facts, it follows
necessarily that the four contact points are not exactly co-planar. As such, the balls roll
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with little sliding, from which follows that there must be sliding friction. In addition, balls
roll about their contact normals. The balls press firmly into the channel because of the high
spring force that is acting on the nut. In reality, this will cause the balls to make small
area contacts (rather than perfect point contacts), and since balls rotate about their contact
normals, it follows that torsional slipping occurs about the contact normals of the balls.
When ball screws are operating at substantial power transmission levels, losses are measured
to be close to a constant percentage of the power throughput (NSK, 2008; SBC, 2015). This
justifies the practice of quoting the efficiency of a ball screw as a single percentage. The effi-
ciency is dependent on the direction of power throughput. Forward efficiency η applies when
the power is transferred from the spindle (rotation) to the nut (translation) and backward
efficiency η′ < η applies if the power flow is the other way round.
A simple friction model is to be implemented that takes into account frictional effects that
(1) are caused by dry friction in reality and (2) sap a percentage of the power throughput
that is only a function of the direction of the power flow. A model that fits these criteria is a
Coulomb friction model in which the ‘normal’ force is the thrust force magnitude. The model
is described below.

Friction model

In equation (3-21), the spring force Fs is defined as being equal to Fn. Consider now the
following relation:

Fn = Fs − Ffric (4-10)
where Fn is the force resulting from the motor and driveline inertia acting on one side of the
nut and Fs is the spring force acting on the other side of the nut. Ffric is the friction force
in the nut, modelled as Coulomb friction resulting from the high normal force pressing on
the balls. The coulomb friction results from the imperfect rolling motion (i.e. sliding) of the
balls.
To solve the EoM, we have to be able to calculate the acceleration from equation (3-20):

ẍn = Fd

m
◦

h
= F
◦

mech + Fn

m
◦

h

However, Fn is unknown. Ffric has to be known to obtain Fn. As such, an expression for
Ffric has to be found.
In case of motion (ẋn 6= 0), the sign of Ffric is equal to that of the nut velocity and Ffric

is defined to be equal to the stiction force Fstic, which is the static force required to induce
motion. This follows from the assumption that the static and kinetic coefficient of friction
are equal. We have:

Ffric :=Fstic

sgn (Fstic) = sgn (ẋn)

}
if ẋn 6= 0 (4-11)

The magnitude of Fstic is yet to be defined, as equation (4-11) only defines its sign. Its
magnitude can be obtained through the known forward efficiency η (as it can be found in
catalogues of ball screws). The forward efficiency η is defined as:

η := Ps

Pn
= ẋn Fs

ẋn Fn
= Fs

Fn
with 0 < η < 1 (forward efficiency) (4-12)
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in which P is power. Recall that this is the efficiency of the ball screw if the rotational motion
(input Fn) drives the translational motion (output Fs). From equations (4-10) to (4-12) we
have

Fstic = sgn (ẋn)
( |Fs|

η
− |Fs|

)
= 1− η

η
|Fs| (4-13)

Equation (4-13) provides the backward efficiency η′:

η′ = Fn

Fs
= |Fs| − |Fstic|

|Fs|
= 1− 1− η

η
= 2η − 1

η
(backward efficiency) (4-14)

This is the efficiency if translational motion drives the rotational motion. The exact same
relation is found in graphs of catalogues of ball screw manufacturers (NSK, 2008; SBC, 2015).
For an efficiency of η = 0.9, the backward efficiency is η′ = 0.8889. If η ≤ 0.5, then η′ ≤ 0,
implying that the ball screw is not back-drivable.

The EoM can now be solved. A distinction has to be made between scenarios where stiction
is experienced and where it is not. During stiction, the nut velocity and acceleration are zero:
ẋn = ẍn = 0. This implies that F

◦
mech = −Fn → Fd = 0. Stiction is maintained as long as

|Fs − Fn| < |Fstic| → |Fs + F
◦

mech| < |Fstic|. In a single line:

Fd = 0← Ffric = Fs + F
◦

mech if ẋn = 0 and |Fs + F
◦

mech| < |Fstic| (4-15)

If the velocity of the nut is positive or negative, or if the velocity is zero and about to become
positive or negative, the friction force is Ffric = Fstic:

Fd = F
◦

mech + Fs − Fstic ← Ffric = Fstic

if ẋn 6= 0 or
(
ẋn = 0 and

∣∣∣Fs + F
◦

mech

∣∣∣ > |Fstic|
)

(4-16)

The conditions
(
ẋn = 0 and

∣∣∣Fs + F
◦

mech

∣∣∣ > |Fstic|
)

in equation (4-16) apply to situations
where the the nut is “breaking out” of its stiction.

Efficiency of Skippy’s ball screw

The constant percentage η that describes the efficiency of a ball screw depends on the friction
coefficient of the materials (related to the quality of the ball screw) and the lead angle, and
is generally very high. The lead angle φbs is calculated as follows:

φbs = arctan
(

nbs

πDbs

)
in which nbs is the lead and Dbs the diameter of the spindle, measured as the centre-to-centre
distance of two balls on opposite sides of the spindle. The 2412–M8 ball screw that we
are considering has a lead nbs = 2 mm and diameter Dbs = 8 mm, from which follows that
φbs = 5.5◦. The data sheet of corresponding ball screw does not provide an efficiency nor
friction coefficient, but catalogues of competing manufacturers show that ball screws with
identical lead angle φbs = 5.5◦ have forward efficiencies ranging from 89% to 97% (NSK,
2008; SBC, 2015). We consider a forward efficiency of η = 90%.
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4-4-2 Energy flow analysis and results

This section analyses the energy flows in Skippy. These flows improve our understanding of
Skippy’s behaviour during the launch phase, and can possibly be used to see how Skippy’s
performance can further be improved.

As a response to the introduced complexity of the model, energy flows have been analysed.
The total sum of all system energies Esys and work done by the system Wout minus work
done on the system Win should be constant, which has been verified. See appendix C for
respective calculations, energy audits that are performed as a check for the correctness of the
simulations and a full definition of all the energy terms. Figure 4-5 shows the cumulative
energy flows of the system of the analysis in section 4-3-2 including ball screw friction:

• All energy flows above zero represent system energies Esys that can theoretically be
converted to other types of system energies. If this flow is decreasing, it means that the
system is dissipating more heat than the motor is doing work on the system.
• The energy flows below zero correspond to heat loss, which are unusable and therefore

considered as work done by the system Wout. Wout is monotonically increasing, since
heat can never be harvested by the system.
• The electric energy delivered to the system equals the work done on the system Win.

Win is monotonically increasing because of the fact that electrical power flow is defined
to be always positive (see equation (4-6)), implying that the sum of Wout and Esys must
be monotonically increasing as well.

The energy graph confirms that both springs are approximately at rest at lift-off, as has been
observed in section 4-1. Most of the energy is desirably converted to translational kinetic
energy of the system Ek,xy, which is the kinetic energy associated to Skippy as a point mass
located at Skippy’s CoM. The graph also shows that some of the system’s energy is uselessly,
yet inevitably converted to rotational kinetic energy Ek,φ. Ek,φ is defined as the total kinetic
energy of the robot’s bodies minus Ek,xy, so it includes (1) all kinetic energy due to relative
(rotational) motions of bodies within the system and (2) kinetic energy that results from
the overall rotation of the mechanism about its CoM. The former (i.e. relative rotations)
are considered an inevitable energy ‘sink’: even if Skippy lifts off with net zero rotational
momentum, the leg and torso are still required to counter-rotate at lift-off, or Skippy would
not have an upward velocity. The rotational kinetic energy stored in the driveline Ek,h is
fortunately negligible. The gravitational energy furthermore increases as Skippy stretches
towards lift-off.

The energy graph furthermore shows that most heat losses occur in the motor, WJT . Heat
losses from the ball screw Wbs are minor. Wreg does not appear in figure 4-5 as they are heat
losses that occur if the motor does significant negative work, which is not the case in the
current simulation.

The motor does approximately Wmech = 27 J work during the thrust phase. With a ball screw
forward efficiency of η = 90% (see section 4-4-1) it is expected that the ball screw generates
approximately Wbs = 2.7 J heat, and consequently causes Skippy to jump approximately
Wbs/(m g) = 14 cm less high. The new simulation shows that this estimation of Wbs was
accurate. Remarkably, Skippy jumps only 7.1 cm lower at 3.79 m (previous: 3.87 m). It
appears that this is related to the fact that the friction causes the nut to be slowed down such
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that the velocity saturation—which effectively reduces the voltage and thus power output
from the motor—is activated later than before.

Above 0: Esys

Below 0: Wout
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Figure 4-5: A clear overview of cumulative system energies (above zero) and heat dissipation
(below zero). Most of Skippy’s energy is efficiently converted to useful translational kinetic energy
needed for jumping (green), with the exception of a few inevitable energy sinks. The ball screw
produces little heat.

4-5 Steering analysis

Another item to be looked into is the steering phase, which has thus far been neglected in
this chapter. The goal of this section is to investigate how the various driveline limitations
limit steering abilities. A simplified steering strategy is introduced in section 4-5-1, which
has the aim of obtaining an indication of the limits of steering. Corresponding results are
discussed in section 4-5-2. As a result of the observed steering capabilities, the linear spring
is replaced by a bilinear spring in section 4-5-3. The new jumping performance is analysed in
section 4-5-4.

4-5-1 Simplified steering strategy

This section describes an executable feedforward steering strategy, with the purpose of sim-
plifying the feedback steering strategy proposed in section 2-2-5. The limits of what can
be achieved by steering can be obtained by putting the GRF on both edges of its friction
cone, which is the strategy that has been employed in section 2-2-5. However, it was found
in section 3-2-4 that—for current system parameters—it is not feasible to produce a torque
command that is required for this steering action due to its aggressive behaviour. The corre-
sponding torque command requires a voltage and current that are not available and it forces
the nut to exceed its maximum velocity.

Instead, we try to simplify the steering strategy, based on earlier observations of steering
torques in section 2-2. We observe from figures 2-6b and 2-9b (and additional simulations)
that the lift-off momenta are generally positively correlated with the knee torque. A positive
steering action (higher horizontal and angular lift-off momentum) requires (on average) a
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higher torque and a negative steering action (lower horizontal and angular lift-off momentum)
requires a lower torque. As a simplification of the steering action, we impose a negative and
positive command torque for t > 0.1 s. The magnitude of the command torque is chosen
sufficiently high to have at least one saturator triggered during the entire steering phase.
Note that this new strategy is not as good as the original steering strategy, and it is not to be
used on a real version of Skippy. The goal of employing this simplified strategy is (1) to find
out what can approximately be achieved with steering and (2) to find out what is limiting
the capability of steering.

4-5-2 Interim steering results

Momentum results for both minimum and maximum steering actions are plotted in figure 4-6a,
together with the GRF ratio in figure 4-6b. Force and velocity results are plotted in figure 4-7
for the minimum steering action. The jumping height is 3.82 m and 3.87 m for the minimum
and maximum steering action respectively. It is satisfactory to observe from figure 4-6a
that Skippy is still able to fully negate the positive momenta build-up during the landing
phase. However, the difference between built-up momenta for both actions at the end of the
steering phase is disappointing. Figure 4-6b shows that slipping only occurs in the very last
milliseconds[ii], and slightly earlier for negative steering. The fact that slipping only occurs
in the very last moment before lift-off supports the validity of the steering test.
By observing figure 4-7, steering capabilities seem mainly to be limited by nut velocity sat-
uration. The steering capabilities are poor mainly because of the low spring stiffness, which
does not permit fast changes of force with the limited nut velocity. Other than changing the
spring stiffness, steering capabilities could be improved by decreasing the transmission ratio
towards the steering phase, effectively increasing the nut velocity. The steering capability is
also limited by the driveline inertia, which limits the nut acceleration. Changing the nut from
its minimum to maximum velocity (i.e. |∆ẋn| = 0.4 m s−1) takes approximately 0.01 s, which
is approximately half of the steering phase, as can be seen in figure 4-7. This acceleration
demands a coupling torque of approximately Tout = 2.5 N m and terminal motor current of
J = 40 A. As such, preceding nut velocity saturation, current saturation dominates the torque
profile shortly after the thrust phase at 0.100 < t < 0.105 s. Figure 4-7 does not separate
current saturation from voltage saturation, but its effect can be seen by the limited thrust
force −F

◦
mech ≈ −3.8 N̨ at 0.100 < t < 0.105 s. If we have a desire to reduce the current

(due to overheating) or coupling torque (due to mechanical coupling or shaft failure), the
acceleration of the nut is further reduced.
Improving steering is primarily done by increasing the spring stiffness in section 4-5-3.

4-5-3 Bilinear spring profile parameters

As a response to the poor steering performance observed in section 4-5-2, this section re-
introduces the bilinear spring profile defined in equation (3-24) (section 3-2-2), which is ex-
pected to improve the steering performance. The bilinear spring introduces two new param-
eters which are required to be defined properly to comply with initial force and potential
energy storage.

[ii]Recall that we assume slipping to occur for |Fx/Fy| > 1
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Figure 4-6: Momentum and GRF results for minimum (grey) and maximum (black) steering
actions with a linear spring. Steering capabilities are insufficient, as the difference between both
steering actions are minimal. The GRF ratio plots tell us that slipping only occurs in the very last
milliseconds.

Given an initial amount of available spring energy Es,0 ' 55 J (estimated in section 3-2-2)
and an initial spring force Fs,0 = τ8,0 (computed from the initial GRF Fy = 200 N), the
spring profile of the main spring is partly defined. The spring profile is fully determined if the
spring is linear, because the only parameter that affects the spring behaviour is the stiffness:
klin : k = Fs,0/(2Es,0). The bilinear spring has three parameters that affect its behaviour:
k1, k2 and lbi. A dependency can be introduced between these parameters to fulfil the initial
force and energy constraints. If k2 is selected as dependent parameter, we have:

k2 =
1
2F 2

s,0 − 1
2 l2bik

2
1

Es,0 − 1
2k1l2bi

(4-17)

This relation implies that k1 and lbi are still free to choose, which is favourable. For k2 it is
mainly important that it is sufficiently low for the nut to be able to travel with adequate speed,
of which we know that it is, because k2 < klin and preceding sections have shown that klin is
already capable of making Skippy jump up to nearly 4 m with saturated nut velocity. However,
k1 and lbi will affect balancing and steering capabilities and are yet to be found. We know
that k1 > klin and it has been shown in section 4-3 that klin is not sufficiently stiff to permit
adequate steering. As an initial guess for adequate steering, we choose k1 = 150 kN m−1,
almost five times higher than klin = 32.15 kN m−1. This stiffness theoretically allows for a
change of spring force ∆Fs ≈ 600 N in ∆t = 0.01 s, which is approximately half the steering
phase—calculated as follows:

∆Fs ≈
Fs

xs
|ẋn,max − ẋn,min|∆t = 2 k(xs) ẋn,max∆t

With an approximate gear ratio of R2 = 0.1, ∆Fs ≈ 600 N corresponds to a knee torque
of ∆τ6 ≈ 60 N m, approximately equal to the difference in torque observed for the various
steering actions in section 2-2-6. lbi is initially approximated as

lbi =

√
F 2

s,f

klin k1
= 6.6 mm
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Figure 4-7: Force and velocity results of Skippy for a ‘minimum’ steering action. Forcing the nut
to run at either of its velocity extremities (ẋn,min and ẋn,max) has little effect on the thrust profile
due to the compliant spring. Steering capabilities are primarily limited by the over-compliant spring
in combination with nut velocity saturation, but also by the limited ability to accelerate the nut
(related to current saturation, voltage saturation and high rotor inertia), as it takes approximately
half the steering phase to accelerate the nut over its full velocity range, which can be seen for
0.10 < t0.11 s.

where Fs,f is equal to the spring force at the transition between thrust and steering at tf :
t = 0.1 s for an identical model that uses the linear spring (i.e. the model analysed in
section 4-4-2. The above relation implies that an equal amount of energy is stored in the
spring at the transition between the thrust and steering phase for both models.

4-5-4 Results

This section analyses the results of Skippy after the introduction of the bilinear spring as
defined in section 4-5-3. From running the simulation with the bilinear spring, we observe
a problem. It is observed in figure 4-8 that the spring fully unloaded itself prior to lift-off,
after which it starts to be loaded in the other direction. The coincidence that we struck upon
in section 4-1, where the spring conveniently reaches zero length by the end of the thrust
phase, is lost due to new spring profile. The behaviour follows from the fact that a spring
with a weakening profile is able to store the same amount of energy in less spring elongation,
whereas the nut travels with the same speed. This causes the the spring to be unloaded
prematurely. The fact that the spring starts pushing the joint makes it even worse. The
pushing force corresponds to leg retraction and reduces Fy, such that Skippy prematurely
leaves the ground. The ankle is unable to finish its steering action and the energy stored
in both the ankle and main spring cannot be used to build up additional momentum. The
energy loss is best observed in figure 4-9. The jumping height of Skippy has reduced to 3.35 m,
which is the result for the positive steering action. The result for the negative steering action
is even worse.

The problem could be solved by increasing the initial spring energy Es,0 or by decreasing
the initial spring force Fs,0, which effectively decreases k2 (equation (4-17)) and increases the
initial spring elongation. However, changing Es,0 = 55 J and Fs,0 is to be avoided as this
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corresponds to making the assumptions about the landing phase more optimistic, which is
less likely to be realisable. Instead, we have to focus on changing the transmission ratio to
alter the travel of xs, which ought to alter the efficiency of energy conversion. This strategy
is addressed in section 4-6-2.
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Figure 4-8: Force and velocity results of Skippy with bilinear main spring. Springs are not
unloaded at lift-off and lift-off is earlier, causing Skippy to lose jumping height.
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Figure 4-9: Energy flow of Skippy with bilinear main spring. The energy stored in springs at
lift-off indicate that energy is sub-optimally transferred to useful kinetic energy.

4-6 Energy-based model improvements

With the introduction of the nut velocity and electrical saturations and ball screw friction,
Skippy’s jumping height has been reduced to 3.79 m (see section 4-4-2). The inclusion of the
bilinear spring, depending on the regressiveness, further reduces the jumping height to 3.35 m
(see section 4-5-4). From an energetic point of view, the following options could be exploited
to make Skippy jump higher:

• increase initial system energy;

Master of Science Thesis J.J.M. Driessen



62 Feedforward approach

• increase mechanical work done by the motor;
• increase conversion to useful kinetic (translational) energy, i.e. improve energy conver-

sion efficiency.

Reasonable approximations have been made concerning the initial energy and thrust force in
section 2-1, and little more can be said about these numbers until we take a closer look at
the landing phase, which does not fit in the current thesis project.
Prior to the inclusion of a bilinear spring, it was observed in section 4-4-2 from figure 4-5
that all energy is converted to desired translational kinetic energy and some inevitable types
of energy (gravitational potential and rotational kinetic energy and heat), as both springs
are approximately at rest at lift-off. Little more can be done to improve energy conversion
efficiency. As a result, the focus is primarily on increasing the mechanical work that is done
by the motor, treated in section 4-6-1, without the inclusion of a bilinear spring.
With the inclusion of a bilinear spring, it was observed in section 4-5-4 that energy conversion
deteriorated. Both springs had energy stored in them at lift-off. The main spring was prema-
turely unloaded after which it was starting to be negatively loaded towards lift-off. This lead
to Skippy prematurely lifting off. As a consequence, the ankle spring did not fully unload and
the launch phase was shorter. Improvement of energy conversion is treated in section 4-6-2,
with the inclusion of a bilinear spring.

4-6-1 Increase mechanical work

The goal of this section is to analyse possibilities to increase the mechanical work done by
the motor. Mechanical work by the motor can be increased in the following two ways

• Increase mechanical power output by the motor.
• Elongate the launch phase, of which mainly the thrust phase, to elongate positive me-

chanical power output over time.

It was found that effectively elongating the launch phase is only possible when increasing the
size of Skippy, effectively increasing the stroke ∆y. If the launch phase is elongated without
increasing ∆y, then this corresponds to a lower lift-off velocity and thus a lower jumping
height. We are trying to avoid increasing Skippy’s size, because this implies that it becomes
harder or even impossible to design Skippy within the 2 kg budget whilst keeping Skippy
physically robust and compact. We have to focus on increasing mechanical power output by
the motor instead.
The maximum power output is dependent on the rotor velocity and voltage. The rotor velocity
ω and torque τ for maximum mechanical power output Pmax are roughly equal to half the
no-load velocity (ωz/2) and half the stall torque (τs/2) respectively, which scale roughly
proportional to the armature voltage[iii], from which follows that maximum mechanical power
output scales approximately quadratically with voltage:

Pmax '
τs ωz

4

U ′ = SU ' Sτs

2
R

cT
+ cT

Sωz

2

P ′
max ' S2Pmax (4-18)

[iii]Scaling is not entirely proportional due to the constant friction torque.
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where S is a scaling factor and cT the torque constant. The optimal rotational velocity for
maximum power is approximately equal to

ωopt : φ̇h = ωz,N

2
Umax

UN

in which N corresponds to nominal values, retrieved from data sheets.

The power output can be maximized by maximizing the voltage and by having the motor
rotate at approximately half the no load velocity for that voltage. Most of the thrust phase
is already determined by maximum voltage output due to the voltage saturation. However,
the maximum voltage can be increased by introducing an additional battery cell. Moreover,
we can alter the transmission ratio by adjusting the lever length, which affects the duration
of the thrust phase that is governed by voltage saturation, and the nut velocity during that
phase. Both options are exploited and further explained in the remainder of this section.
Lastly, we analyse the capabilities of a previously mentioned lighter motor—the Maxon RE30
60 W 24 V—as it has a number of advantages over the heavier RE35 motor.

Additional battery cell

Through iterative studies of simulations in this section, it was decided to add an additional
battery cell to increase the maximum voltage. We have moved from 2×4-cell lithium-polymer
batteries to 3 × 3-cell lithium-polymer batteries. If the assumption is made that 90% of
the voltage can be used (see section 2-1-3), we have 0.9 × 9 × 3.7 = 0.9 × 33.3 = 30 V
available. The additional cell corresponds to an increase of maximum power of approximately
(8/9)2 − 1 = 26%. A disadvantage of increasing voltage is increasing heat generation and
adding weight, as such, we try to avoid adding more batteries. The decision to add an
additional cell was thence not taken lightly. With 9 cells or 30 V, the 24 V motor can be
over-driven up to 25%.

With the 9th cell, Skippy’s performance instantly improves by jumping up to 3.97 m instead
of 3.79 m[iv].

Changing lever length

In addition to the 9th battery cell, the transmission ratio can be adjusted to maintain a
near-optimal nut velocity throughout the thrust phase, maximizing the mechanical power
delivered by the motor. The optimal nut velocity is approximately ẋn = ωopt/R3 = −0.161,
whereas the nut travels at a velocity of −0.2 < ẋn < −0.178 m s−1. By reducing the lever
length, the nut velocity can be lowered to approach optimal nut velocities. A 20% reduction of
the lever length, from lq = 10 cm to lq = 8 cm, is expected to reduce the minimum nut velocity
by approximately the same percentage, since the lever length is approximately proportional
to the transmission ratio. It is thus expected that this change leads to a nut velocity of
−0.2 < ẋn < −0.143 m s−1 throughout the thrust phase, for which the nut passes its optimal
velocity twice. Simultaneously, the increased lever length is expected to improve steering and

[iv]This result corresponds to the performance of Skippy analysed in section 4-4-2, including ball screw friction,
with a linear spring

Master of Science Thesis J.J.M. Driessen



64 Feedforward approach

balancing, since it effectively allows for faster actuation velocity. This can also be reflected
from the increased spring stiffness, which is recalculated accordingly to match the initial
increased force (ca. +20%) and energy requirements (identical).

The implementation of the new lever length leads to an increment of the jumping height
to 4.10 m, with a minimum absolute nut velocity of 0.145 m s−1, close to the estimated
0.143 m s−1. Results of force and velocity curves are plotted in figure 4-12. The improved
jumping height appears mainly to be attributed to the fact that the voltage saturation dom-
inated the thrust phase for longer, before the nut velocity saturation starts dominating the
thrust torque, reducing the maximum available voltage. The effect of a changing nut velocity
during voltage saturation is minor. The effect can be seen in figure 4-10a, which shows the
mechanical power delivered by the RE35 motor for lq = 10 cm and lq = 8 cm. It can be seen
that the power input is nearly at its maximum of approximately 380 W in the beginning. Dur-
ing this phase, the thrust phase is dominated by voltage saturation, where U = Umax = 30 V.
When the nut reaches its maximum permissible absolute velocity of ẋn,max = −0.2 m s−1, the
mechanical power input decreases. The power decrease follows from the fact that the spring is
unloading and the nut is travelling with constant speed. An unloading spring corresponds to
a dropping spring force. The spring force equals the nut force. The product of this declining
force and constant velocity equals power, which must therefore be dropping as well.

The power reduction is reflected by the fact that the nut velocity saturation now dominates the
torque command, from which follows that |U | ≤ Umax instead of U = Umax. A reduced voltage
input reduces the mechanical power generated by the motor. The maximum power output
scales approximately quadratically with voltage, as evaluated in equation (4-18). In contrast,
maximum power as function of nut velocity is a parabola, meaning that small changes from
the optimal velocity cause very little change to the maximum output power. Figure 4-11a
further elucidates the principle. The figure shows constant power lines as function of nut
velocity and voltage, for the upper half of the voltage and velocity range on square axes. The
horizontally stacked curves show the major dependency of power on voltage. As such, it can
be concluded that it is most important to focus on maintaining maximum voltage rather than
maintaining an optimum nut velocity, as long as the nut velocity does not deviate too much
from its optimal value.

We have furthermore reduced the initial nut velocity to ẋn,0 = φ̇h,0/R3 = ωopt/R3 which was
considered to be a more realistic assumption than ẋn,0 = −0.2 m s−1 given that we do not
aim for Skippy to be dominated by nut velocity saturation by the end of the landing phase.
Because of this minor change, nut velocity saturation kicks in slightly earlier which slightly
reduces the jumping height, from 4.10 m to 4.08 m.

It could be considered to reduce the lever length even further, to lq = 7 cm, extending the
duration of maximum voltage domination even more. However, there are various reasons not
to go down this route. With the current system parameters, Skippy’s performance regarding
jumping height is satisfactory. Lowering the lever length also has disadvantages. Foremost,
the lever length is approximately inversely proportional to the axial force on the spindle,
which is limited to approximately Fn,max = 3.1 kN. It can be observed from figure 4-12 that
the forces are higher. Moreover, decreasing the lever length increases the torque:velocity
ratio of the motor, which decreases the motor efficiency and subsequently leads to more heat
generation. Lastly, nut velocities that are more suboptimal from the optimal velocity reduce
the maximum power output more significantly. In fact, a re-run of the simulation for lq = 7 cm
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has shown an improvement of mere 3 cm jumping height.

(a) Power output RE35 90 W 24 V motor
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(b) Power output RE30 60 W 24 V motor
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Figure 4-10: Mechanical power output of both motors, compared for various lever lengths lq
(ẋn,0 = ωopt/R3, U = 30 V). Shorter lever lengths permit the battery to deliver maximum
voltage for a longer time. In general, this increases work done by the motor as long as lever
lengths are not too short (lq & 7 cm), for which the required motor velocity becomes significantly
suboptimal.

RE30 motor

It may be worth considering to step down to the lighter RE30 60 W 24 V motor instead of
the RE35 90 W 24 V motor, for it has some interesting advantages and it is able to deliver
an almost identical amount of mechanical power as the RE35 model, at 365 W versus 380 W.
Its rotor inertia is almost twice as low as the RE35 model, which is convenient for balancing
and steering. This was already noted in section 3-2-3 and section 4-3. Moreover, at 260 g
it is 80 g lighter than the RE35. A disadvantage is that its thermal time constant of the
winding at 16.3 s is almost twice as low, which means that it overheats quicker. Although,
since hopping up to 4 m only takes a couple of seconds, this should not be a major problem.
Secondly, the absolute nut velocity for maximum power output is 0.183 m s−1 at 30 V, which
is approximately 0.02 m s−1 faster than the 0.161 m s−1 optimum speed of the RE35 motor.
This seems like an advantage at first, because this value is closer to maximum nut velocity,
allowing us to travel more efficiently at maximum nut velocity. However, we have also seen
that maximum power is mainly determined by maintaining maximum voltage, for which we
desire a relative short lever length. A lever length shorter than lq ≈ 10 cm will cause the motor
to run primarily below its optimum speed. The effect on mechanical power output is not a
problem for small velocity deviations, but is already obvious for a lever length of lq = 8 cm,
as can be seen in figure 4-10b. Moreover, it is generally preferred to run the motor at speeds
slightly above ωopt than speeds below ωopt, because the motor’s efficiency deteriorates for
higher torque/velocity ratios, causing even more heat generation. Nevertheless, Skippy is still
able to jump up to a height of 4.01 m and 3.94 m for lq = 8 cm and lq = 10 cm respectively,
making this motor a viable candidate as alternative for the RE35, not to be excluded from
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(a) Power output is most sensitive to U than ẋn
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Figure 4-11: Armature voltage and current as function of nut velocity for constant mechanical
power outputs. Axes have equal length and plot upper half ranges of velocity, voltage and current
to compare their effect on the power output. The nearly horizontal curves in figure 4-11a indicate
that—for our range of nut velocities—power output is mainly dominated by voltage rather than
velocity. Currents do not exceed the maximum of 40 A.

considerations.

4-6-2 Improving energy conversion

This section focusses on improving energy conversion to useful kinetic energy during the
thrust phase, which should increase the jumping height. When rerunning the simulations
with the new system with the bilinear spring, we observe similar behaviour as in section 4-5-4:
suboptimal unloading of both springs. The reduced lever length has somewhat improved the
results, but not sufficiently so. A shorter lever results in shorter nut travel, which is favourable
for reduced spring length. However, the fact that a shorter lever also redefines the spring to be
stiffer and thus even shorter, negates part of this effect. We require a change in transmission
ratio that does not or barely affect the initial transmission ratio, but increases the transmission
towards and during the steering phase. This results in reduced spring travel without having
to increase the nut velocity and without affecting the spring profile. Moreover, the increased
transmission ratio allows for quicker knee joint motions during the steering phase and thence
improves steering capabilities.

The variable transmission ratio can be tuned properly in a future version of the dynamical
model, where the complete four-bar linkage is modelled. However, we can already obtain
an incremental transmission ratio by reducing the lever angle φq. This angle is currently
φq = π

8 rad = 22.5◦, which we can reduce to approximately φq = 10◦. For lower lever angles,
upright balancing would no longer be possible because the linkage would cross a singularity.
In addition to a change of lever angle, it was decided to reduce the lever length to lq =
7 cm, as this further improved the steering capabilities and energy transfer efficiencies. The
transmission ratio R2 for φq = 10◦ and lq = 7 cm is displayed in figure 4-13, compared to old
transmission ratios. Note that the new R2 nearly crosses zero at φknee = 2 q6 = 180◦. Steering
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Figure 4-12: Force and velocity profiles with new lever length lq = 8 cm. The thrust phase is
longer dominated by voltage saturation; the nut does not reach its maximum permissible absolute
velocity of ẋn,max = 0.2 m s−1 until t ≈ 0.7 s. This improves jumping performance.

occurs for 45 . q6 . 60◦, for which the transmission ratio is reduced by approximately 20%
to 40%.

4-6-3 Results

The spring profile is defined by k1 = 150 kN m−1, lbi = 5.0 mm and k2 = 52.22 kN m−1[v]

according to equation (4-17). The results of the simulations are plotted in figures 4-13 to 4-16
for the RE35 90 W 24 V Maxon motor, φq = 10◦ and lq = 7 cm.

We have performed identical simplified steering tests as in section 4-5-1, where the nut is sent
to its minimum and maximum velocity for t > 0.1 s. From figure 4-14a can be observed that
steering has much improved with respect to figure 4-6a. Similarly to what was observed in
figure 4-6b, slipping only occurs in the very last milliseconds before lift-off. Moreover, from
figures 4-15 and 4-16 is observed that both springs are approximately unloaded at lift-off,
indicating that energy is transferred more efficiently to kinetic energy. For this particular
motion, where Skippy is performing positive steering, Skippy is able to jump up to a height
of 4.16 m. For negative steering, energy conversion is less efficient and Skippy jumps up
to 3.96 m. We still observe that Skippy lifts off earlier for negative steering, which reduces
steering capabilities. Other steering strategies can possibly improve upon this undesired
behaviour. Lower hops likely also allow for better steering actions, since more time will be
available and |q̇8| will likely not be much higher (if even higher) than |ẋn|. Introducing the full
four-bar linkage (to replace the knee joints that are geared 1:1) increases possibilities to change
the transmission ratio, which could be optimized to further improve steering capabilities.
However, it is expected that introducing the four-bar linkage does not further increase the
jumping height, because energy transfer during the launch phase is already nearly optimal,
as can be observed in figure 4-16. The implementation of the four-bar linkage is furthermore

[v]Note that k2 is higher than previously due to the reduced transmission ratio, even higher than the previous
value of the linear spring stiffness 32.15 kN m−1
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(a) Transmission ratio R2 = ∂q8/∂q6 versus q6
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Figure 4-13: Lever transmission ratio R2 as function of q6 and q8 for various lever parameters.
The new (dotted) transmission ratio is more regressive towards and during the steering phase,
which improves steering capabilities for which we require fast but low-torque motions.

not included in this work, because its many parameters require an optimization that does not
fit within the scope of the thesis.

Because of the reduced lever length, the thrust phase is now dominated by maximum voltage
for more than 80%. During part of the thrust phase, the shaft velocity is lower than the
optimal velocity ωopt, but still sufficiently close to the optimal velocity to do more than 96%
of maximum mechanical power that the motor can deliver. Shortly after t = 0.8 s, the thrust
phase is dominated by nut velocity saturation, causing a voltage drop and thus a significant
drop of mechanical power delivered to the system (approximately 60% of maximum power at
t = 0.1 s).

The disadvantage of running at velocities lower than the optimal velocity is more heat genera-
tion, which can be observed in figure 4-16. For the RE30 60 W 24 V motor, heat generation is
even worse due to higher no-load speeds. For the RE30 motor, it is recommended not to step
much lower than lq = 8 cm, although this significantly reduces the jumping height below 4 m.
The RE30 however is slightly better at steering due to its lower rotor inertia. Nevertheless,
since steering capabilities are mainly limited by limited nut velocities, rotor inertia should
not be a main design criterion.

The reduced lever length has further increased the axial force on the nut, up to τ8 ≈ 2.5 kN.
This is still below the maximum permissible absolute of Fn,max = 3.1 kN. For positive steering,
the torque on the coupling is still |Tout| < 1 N m.

Simulations have also been done for different spring parameters k1 and lbi. In general, we
found that more weakening spring profiles (i.e. higher k1, higher lbi) slightly deteriorate
energy conversion (i.e. springs are not fully unloaded at lift-off). Nevertheless, jumping up
to 4 m and decent steering can be achieved for a variety of spring profiles.
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(a) Momentum results
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Figure 4-14: Momentum and GRF results for minimum (grey) and maximum (black) steering
actions with a linear spring. Steering abilities have improved with respect to figure 4-6a, as
the differences between horizontal and angular momenta for both steering actions differ more at
lift-off. The robot does tend to slip just before lift-off, as the GRF ratio falls below −1.

Concluding remarks

In this chapter we have initially fed a simple feedforward torque to the motor, after which we
have dealt with various physical limitations of the systems by dynamically saturating that
torque command. It was found that the action strategy for thrusting and steering is mainly—if
not completely—dominated by these physical limitations. It confirms that attempting to
reproduce an imposed master curve on the quadriceps force τ8 such as attempted in chapter 3
is an inefficacious approach. Instead, the new action strategy allows us to be on the edge
of what the system is physically capable of delivering. Moreover, the strategy improves our
understanding of the system behaviour and limitations. The obtained knowledge is used to
further improve physical parameters of the system.

We found that the thrust phase is primarily dominated by available voltage, and secondarily
by limited nut velocity. Maximum mechanical power can be pumped into the system if we
can send maximum voltage through the motor for as long as possible while the motor is
rotating at roughly the optimal velocity ωopt ∼ ωz/2. Focussing on maximum voltage is
thus key. Elongating maximum voltage input can be realized by preventing the nut velocity
saturation to be activated, which can be done by preventing the nut to approach a velocity
of |ẋn| = 0.2 m s−1. This is realized by reducing the lever length lq, effectively reducing the
transmission ratio. By doing so, one has to be cautious for additional heat generation and
increased axial forces on the driveline.

The steering phase is primarily dominated by limited nut velocity. Aggressive steering actions
are furthermore dominated by current. Steering capabilities have severely deteriorated since
the introduction of the essential series elastic driveline. However, lowering the transmission
ratio towards and during steering and increasing the spring stiffness have shown improvements
to steering. The full four-bar linkage can likely be used to further improve steering capabilities,
but not the jumping height.

Having achieved sufficient jumping heights and decent steering actions for a variety of spring
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Figure 4-15: Forces and velocities for system with bilinear spring, lq = 7 cm and φq = 10◦. The
performance has improved with respect to figure 4-8 as contact with the ground is prolonged and
springs are nearly unloaded at lift-off.
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Figure 4-16: Energy flows for system with bilinear spring, lq = 7 cm and φq = 10◦. Energy is
very efficiently converted to translational kinetic energy required for jumping.

profiles, system parameters and a viable action strategy, it seems appropriate to analyse some
of Skippy’s required additional abilities towards achieving 4 m high hops. These abilities could
further reduce the scope of our solutions. Chapter 5 focusses on Skippy’s physical ability to
balance, which is one of these abilities.
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Chapter 5

Balancing

In chapter 4 it was shown that it is possible to achieve 4 m high hops with a reasonably realistic
planar model of Skippy. However, only the thrust phase of the final hop was considered. In
order to get to the beginning of that thrust phase, Skippy has to be able to do the following,
ordered in reverse chronology:

• The landing phase of the final stance phase.
• In-flight control
• Hopping higher from low hops
• Low hopping from standstill (a balanced configuration)
• Balancing
• Standing up from a crash

In the scope of the thesis project it is not feasible to focus on all these phases. The action
that is most different from making high jumps is balancing. Without the ability to balance,
there is no ability to hop. As such, Skippy’s ability to balance is investigated in this chapter.
The focus of this project is not on control, but on design. We are interested in the effect of
various system parameters on Skippy’s physical balancing performance. These parameters
include inertial and dimensional properties, but also spring stiffness. For a future optimiza-
tion of Skippy’s parameters, it is important to know how these properties affect Skippy’s
balancing performance. Section 5-1 investigates Skippy’s physical ability to balance through
a measure called the velocity. Section 5-2 uses a simple controller to verify predictions about
the balancing performance by the velocity gain. As a result, a closer analysis of Skippy’s mass
distribution is done in section 5-3 with a successful attempt to improve Skippy’s balancing
performance.

5-1 Physical ability to balance

Previous studies have shown that a robot with a morphology similar to that of Skippy is
able to balance in 3D with 2 actuators (Azad, 2014). The study also shows that the 2D
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balancing problem can be decoupled from the 3D system. The 2D morphology of Skippy
is very similar to that of acrobot (Berkemeier and Fearing, 1998), which is a system that
has been studied thoroughly in the field of control engineering. The studies however do not
consider our unique finite stiffness driveline with limited nut velocity, nor do they use the
inertial and dimensional parameters that we use for Skippy. In fact, none of the control
studies investigate the physical ability of acrobot-like robots to balance. A recent study has
addressed exactly this topic, and introduced a measure called the velocity gain (Featherstone,
2012a). This section investigates Skippy’s ability to balance with that measure, which has
not yet been used by anyone for actual robot design. Section 5-1-1 defines the velocity gain
and section 5-1-2 describes simplified robot models for which the velocity gain is calculated
and analysed in section 5-1-3.

5-1-1 Velocity gain

(a) Bend Balancer

x

y

g

q1

φ

q2

(b) Swivel balancer

x

y

g

q1
φ

q2

Figure 5-1: Planar models for bend and swivel balancing, consisting of only two bodies each.
The swivel balancer uses a frontal view of 3D Skippy, where the leg and torso are considered as
a single body, effectively locking the knee.

This section describes the velocity gain, a measure to analyse the physical ability of a robot to
balance. Referring to figure 5-1, the velocity gain Gω is a ratio of the movement of the robot’s
CoM to the movement of the actuated joint that causes the movement (Featherstone, 2012a).
More specifically, the velocity gain Gω is defined as the ratio between the instantaneous change
of φ̇ and an instantaneous change of the actuated joint q̇a, induced by an impulsive torque
applied at qa:

Gω(q) := lim
∆qa→0

∆φ(q)
∆qa

= ∆φ̇(q)
∆q̇a

(5-1)

Identical to the definition of φ in section 2-2-2, φ is the angle of the vector passing through
the CoM and the ground contact point (toe) with respect to the ground, where the ground is
defined as being perpendicular to gravity. φ is the angle that is to be controlled to maintain
balance. The robot has a balanced configuration if φ = π

2 rad.
Gω is a function of the robot’s configuration described by joint coordinates q. It is important
to note that the velocity gain is a dimensionless quantity, which means that it is invariant to
an equal scaling of all system dimensions and mass. A robot is a better balancer if |Gω| is
higher for all sets of joint coordinates for which the robot is supposed to be able to balance.
If Gω(qz) = 0, the robot is physically unable to balance at the configuration described by
q = qz.
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5-1-2 Simplified balancing model

Skippy’s velocity gain can be readily calculated using equation (5-1). Higher values of the
velocity gain suggest better balancing abilities. However, to obtain a better indication of how
good of a balancer Skippy is, we compare Skippy’s velocity gain with the velocity gains of two
other (acrobot-like) double-pendulum models. This section provides a description of these
models and a simplified model of Skippy.

Two simple double-pendulum robot models are introduced. The first model consists of two
identical slender beams, which is a well-known model in the field of control theory and dy-
namics. The second model is optimized to have a high velocity gain, and is referred to as
‘good balancer’ (Featherstone, 2012a). To ease comparison of the balancing performance, we
simplify our model of planar Skippy to also be a double-pendulum robot, depicted in fig-
ure 5-1a. The new leg parameters are those of the old leg and foot combined. The lever with
two 1:1 geared joints are replaced by a single revolute joint, which connects the torso to the
leg. This joint is the knee joint with joint position q2. The new joint position is the knee angle
q2 = φknee and thus corresponds to the sum of the upper and lower knee joint positions q5 and
q6 as defined in section 2-2-1. All models now have a morphology identical to that of acrobot,
albeit with different ratios of inertial and dimensional properties. Recall that the velocity
gain is a dimensionless quantity, which means that it is invariant to a uniform scaling of all
systems dimensions and masses. Table 5-1 lists a set of inertial and dimensional parameters
of the robots that are scaled so as to match the leg length and mass of the simplified Skippy
model. This scaling is applied as it allows for better comparisons between the various robot
parameters for the reader.

i joint body mi [kg] Ii [kg m2] ci,x [m] li = ri+1,x [m]

simplified planar Skippy
{

1 toe leg 0.2 m1 0.192 0.24 0.55
2 knee torso 1.8 m2 0.172 0.38 –

good balancer
{

1 toe leg 1.63 m1 0.122 0.24 0.55
2 knee torso 0.37 m2 0.272 0.60 –

slender beams
{

1 toe leg 1 m1 0.162 0.275 0.55
2 knee torso 1 m2 0.162 0.275 –

Table 5-1: Parameters of a simplified two-link model of Skippy, compared with parameters of
two other acrobot-like balancers with identical morphology. Note that l2 has no effect on the
dynamics, and is therefore not listed.

The models each have two joint position variables q = [q1 q2]T, where only q2 is actuated, i.e.
qa = q2. q1 is the angle of the lower link (leg) with respect to the ground and q2 is the angle
of the upper link (torso) with respect to the lower link.

We will not elaborate on the derivation of the velocity gain for acrobot-like robots. It can
be found in (Featherstone, 2012a). However, it is to be noted that for the particular case of
inverted double pendula, Gω is only a function of q2, i.e. Gω(q)→ Gω(q2).

5-1-3 Results

Figure 5-2 plots Gω as function of q2 for the simplified version of Skippy, the two slender
beams and the good balancer. q2 = 0◦ and q2 = 180◦ correspond to a fully stretched and
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Figure 5-2: Skippy is a poor balancer: its velocity gain is inferior compared to that of other
double-pendulum robots.

bent configuration respectively. We observe that Skippy is a very poor balancer for stretched
configurations, as its velocity gain at |Gω(0◦)| = 0.0256 ≈ 1/40 is extremely low. The slender
beams and good balancer models have a velocity gain that is much better, at |Gω(0◦)| = 1

16
(exact) and |Gω(0◦)| ≈ 1/5.71 respectively.

If we could linearise the system at the given configuration, Skippy’s velocity gain implies that
a CoM offset of ∆φ = 0.1◦ CoM requires at least a ∆q2 = 0.1 × 40◦ = 4◦ correction by the
actuated joint. In reality, the total angular travel of the actuated joint

∫
|q̇2|dt exceeds 4◦

because the robot cannot move infinitely quickly. During the corrective motion, gravity acts
on the robot which worsens the balance error. Simulation studies of other robots have shown
that the overshoot is two to three times the minimum travel predicted by the velocity gain
(Featherstone, 2015b), which indicates that a correction of approximately 8◦ < ∆q2 < 12◦ is
required.

The approximation of above linearisation becomes worse for larger CoM offsets, for which we
have to consider the maximum balancing range of the knee joint. The balancing range of the
knee is smaller than the total knee range of 180◦. The swivel bar would hit the ground if the
knee is fully bent, and balancing in an upright configuration is extremely hard as the swivel
axis (even though slightly tilted with respect to the torso) would be nearly perpendicular to
the ground. We assume a balancing range of 15◦ . φknee . 165◦, approximately 150◦ in total.

Eventually, we are interested in the ability of Skippy to correct for a ∆φ = 5◦ CoM offset, as
mentioned in section 2-1-5. The linearisation suggests that this offset requires the actuated
joint to move by at least 200◦, with an expected rotation that is approximately two to three
times this amount: 400◦ < ∆q2 < 600◦. The resulting numbers exceed the knee’s total range
of maximum 150◦ by far. However, this approximation assumes the velocity gain to be equal
for all its states, which is not the case. In fact, the velocity gain improves for flexed (crouched)
configurations, as can be seen in figure 5-2. This suggests that the expected required rotation
reduces if Skippy is doing its corrective motion by crouching, which is the case if φ > π

2
(Skippy leans forwards).
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5-2 Verification

It is not our goal to devise a stable balancing controller in this thesis. Nonetheless, it is
desired to verify the abstract predictions by the velocity gain in section 5-1-3 about Skippy’s
poor balancing performance. As such, we apply a readily available balancing controller for
verification. The results are discussed in section 5-2-3, using the controller selected in section
section 5-2-1 including electrical saturation as described in section section 5-2-2.

5-2-1 Controller selection

The goal of this section is to find a readily available controller that can be used to verify the
predictions of the velocity gain through dynamic simulations. Many balancing controllers have
been developed for acrobot-like robots. A selection of prominent controllers have been com-
pared by Azad (Azad, 2014), these include Spong’s LQR controller (Spong, 1995), Berkemeier
and Fearing’s linear controller (Berkemeier and Fearing, 1999), Grizzle’s non-linear controller
(Grizzle et al., 2005) and Azad’s non-linear angular momentum-based controller. The com-
parison concluded that the latter offers the overall best performance, regarding overshoot and
settling time. A disadvantage of the controller is that it relies on symbolic derivations of
the system’s dynamics. Featherstone has expanded on the momentum-based control princi-
ple that Azad uses, and has devised a controller that does not require symbolic derivations
(Featherstone, 2015a), for which it is more broadly applicable to robotic systems with larger
kinematic trees.

We use Featherstone’s controller to analyse Skippy’s balancing behaviour, for the following
reasons:

• availability The controller has specifically been tested for acrobot-like models and
has proven its successfulness for (at least) this model, and for the type of reference
signals that we are interested in (step functions). Correspondingly, previously derived
equations can directly be applied to our models.
• performance Featherstone’s controller is extremely similar to Azad’s controller,

which has been shown to outperform many other controllers that were developed for or
tested on acrobot.
• generality Despite the fact that the control system is readily available, the controller

does not require symbolic derivation and is generalizable for other planar balancing
robots. The controller consists of a simple linear control law that acts on a plant
described by state variables [q2 L L̇ L̈]T and two (variable) parameters Y = [Y1 Y2]T.
L is the angular momentum of the robot about its support. For a constant reference
signal qr : q2 = constant, the control law equals

...
L = k1 L̈ + k2 L̇ + k3 L + k4 (q2 − q2,r) (5-2)

in which k1 to k4 are gains. The controller as a whole is non-linear, because L (and its
derivatives) and Y are non-linearly related to the system’s state variables [q1 q2 q̇1 q̇2]T.
However, general expressions for L and Y can be derived that take elements of the
readily available joint-space inertia matrix H [i] as input, which also holds for systems

[i]For a definition of the joint-space inertia matrix H, see appendix B (Featherstone, 2008c)
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with larger kinematic trees. This has two advantages. Firstly, since H and the system’s
state variables are available numerically, we do not require any symbolic derivation to
obtain the controller equations. Secondly, the controller does not lose its generality, for
it is able to be applied to different balancing systems with different inertia matrices H.
In fact, it is expandable to models of Skippy with more complicated kinematic trees,
which is desirable for future research.
• simplicity The controller is simple for two reasons. One reason is the above discussed

generality: the plant parameters and state variables are functions of elements of H,
and thus automatically adapt to a system with different inertial and dimensional pa-
rameters. Moreover, the linear control law allows for easy placement of the poles from
the characteristic equation. The four poles are all placed at a single point −p on the
negative real axis[ii], which leaves the user only with one variable (p) to affect the be-
haviour of the controller. Choosing the variable is a trade-off between settling time and
overshoot and is typically done through trial-and-error. A higher value of p corresponds
to a faster control action, but leads to more overshoot. The fact that only one variable
can be changed by the user simplifies tuning significantly.

5-2-2 Electrical Limitations

In addition to analysing Skippy’s balancing performance with the controller selected in sec-
tion 5-2-1, we implement electrical saturation as described in section 4-2, which can also be
used to approximate nut velocity saturation if the motor torque is low. The inclusion of
this saturation is used to analyse how driveline limitations further limit Skippy’s balancing
performance in section 5-2-3.

The controller can be supplemented by electrical saturation without considering the series
elastic and inertial driveline. This implies that the motor shaft velocity φ̇h is proportional to
the knee joint velocity q̇2. We expect that the inclusion of driveline inertia has little effect
on balancing performance, as it was observed in chapter 4 that the nut can be accelerated
from zero velocity to its maximum 0.2 m s−1 in a mere 5 ms, whereas the action required
for balancing is much slower than thrusting and it is governed by lower forces. Instead, the
expected delimiter of balancing performance is the limited nut velocity.

To implement electrical saturation, it is required to consider the transmission ratio R123
between φ̇h and q̇2. The corresponding control diagram is depicted in figure 5-3. The controller
takes the system state variables (q, q̇) and a reference angle qr : q2 as input. The controller
outputs the torque command for the knee τ2,c, which is fed to the electrical saturation after
it has been converted to the motor torque command Tmech,c. The dynamic saturation is a
function of the shaft velocity φ̇h and outputs the motor torque Tmech.

R123 is an estimation of the real transmission ratio between the knee joint and shaft. It
consists of three components:

R123 = R1 R2 R3

R1, R2 and R3 have been defined earlier in the thesis. R1 is the transmission ratio between
the upper knee and knee and R3 is the gear ratio between the motor shaft and nut. They are

[ii]Placing all poles of a characteristic equation in a single point is a reasonable approach, since mainly the
pole closest to zero affects the speed of the controller.
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given by equations (2-1) and (3-18) respectively and are both constant. R2 is the gear ratio
between the nut and upper knee joint, given by equation (3-14), which is not a constant. To
simplify the control problem, we approximate R2 with a constant as well, such that R123 is
constant. The range of the upper knee joint is approximately π

2 rad, which corresponds to a
linear quadriceps travel of

√
2lq. We use their ratio to redefine R2 as a constant:

R2 =
√

2 lq
π/2 = 2

√
2 lq
π

For lq = 7 cm, R2 = 0.063 m rad−1, which corresponds approximately to the average of R2 in
figure 4-13 (for lq = 7 cm). R123 becomes

R123 = −2
√

2 lq
n

≈ −99

qr

controller robot

R123

R−1
123 e sat R123

q, q̇

τ2,c

q̇2

φ̇h

Tmech,c Tmech

τ2

Figure 5-3: Block diagram of a robot (e.g. Skippy) and balancing controller with electrical
saturation. Dashed lines correspond to inputs that affect the dynamic saturation limits.

5-2-3 Results

This section presents and discusses simulation results of the balancing performance of the
double-pendulum robots. The corresponding simulations are done using the controller selected
in section 5-2-1 including electrical saturation described in section 5-2-2.
The task of the controller is to recover from a 5◦ balancing offset. We compare results of
Skippy with that of a good balancer and slender beams. The initial knee angle is chosen at
q2,0 = 15◦. This is close to the stretched configuration q2 = 0◦. The initial leg angle q1,0 is
chosen such that the CoM angle φ initially equals φ0 = 180◦ + 5◦. The initial velocity is set
to [q̇1,0 q̇2,0]T = [0 0]T. The reference signal qr, which is the desired knee angle that is fed to
the controller, is set to a constant qr : q2 = 90◦. This balancing position is approximately in
the middle of the knee’s RoM.
The simulation experiments are performed with a maximum voltage of Umax = 30 V on Skippy
and the two other double-pendulum robot models (see figure 5-1a and table 5-1), by using
the block diagram in figure 5-3. In addition, we perform an experiment with the model of
Skippy and a maximum voltage of

Umax = 18 V ≈ UN

ωz,N
ẋn,max R3
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where UN = 24 V is the nominal voltage and ωz,N the no-load rotational velocity correspond-
ing to the nominal voltage. Assuming that the actuation torque is relatively low, setting
the maximum voltage is a simple yet reasonable method to indirectly implement nut velocity
saturation.

The pole p has been selected through trial-and-error to minimize the overshoot. Typically, a
lower pole decreases the overshoot, but it slows down the balancing. However, if the system
is too slow, secondary effects such as gravity dominate system behaviour. This could increase
the overshoot or causes the system to go unstable.
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Figure 5-4: Results of balancing simulations of various robotic models. Skippy is a poor balancer;
its settling time and overshoot are higher.

All results are plotted in figure 5-4. From figures 5-4a and 5-4b, we observe that Skippy is
indeed a poor balancer, but not as bad as predicted in section 5-1-3. Skippy requires its
full range to recover from its initial offset (i.e. q2 → 180◦), for which the swivel bar would
hit the ground in reality, but it does recover. We observe that velocity saturation is only
active in the very beginning, but it does not cause the controller to go unstable. The effect
of voltage saturation on the nut velocity can be seen in figure 5-4c, where the nut velocity
ẋn = q̇2 R1 R2 = φ̇h/R3. It can be observed that the reduced voltage performs adequately as
a velocity saturator, as the nut velocity is capped at approximately ẋn = 0.2 m s−1. This is
likely due to the low torques observed in figure 5-4d (where F

◦
mech = τ2/R1/R2 = Tmech R3),
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of which the peak value is approximately 10 times lower than the maximum that can be
transmitted. Note that the reduced voltage further decreases the performance, so that q2
reaches 200◦ > 180◦ (figure 5-4a). This would require Skippy’s torso to bend through its leg.

The performance of the slender beams is better, as predicted by the velocity gain, and would
be satisfactory for Skippy. The performance of the good balancer is excellent, as we barely
observe any overshoot. The result is likely never attainable with Skippy, because it requires
a mass distribution that is terrible for jumping.

To validate the neglect of the main spring, we can check what the nut velocity would have
to be if it would be driving the joint via a spring with stiffness k. This velocity equals
ẋ′

n = ẋn + (1/k) (τ̇2/R1/R2) (this equation is similar to equation (3-26)). (1/k) (τ̇2/R1/R2)
is a term that adds (or subtracts) a velocity to obtain the required nut velocity to drive the
joint, which is found to be negligible for most of the simulation time due to the relatively
high stiffness k = 150 kN m−1 (the stiffness used in section 4-6-3). This supports the validity
of neglecting the spring in the driveline.

The main conclusion drawn from the current analysis is that Skippy’s balancing performance
is insufficient. The balancing performance is improved by changing inertial and dimensional
system parameters of Skippy in section 5-3.

5-3 Improving balancing performance

To improve Skippy’s balancing performance, a redistribution of its mass is required. Most of
Skippy’s mass is located towards the swivel bar, which is done for the purpose of jumping
as described in section 2-1-4. The good balancer model suggests that much of Skippy’s mass
should be moved to the leg, but this is not acceptable for jumping. We also cannot accept
a big difference between leg and torso length, as explained in section 2-1-4. However, we
can attempt to move some of the torso mass towards the knee to improve the balancing
performance, and congruently move another part of the torso mass further towards the swivel
bar as to prevent deterioration of thrust performance. This effectively increases the radius
of gyration (RoG) of the torso—and thus of the whole robot—which should also improve
balancing performance.[iii] This section sketches a more in depth and realistic scenario of mass
distribution of Skippy’s torso (section 5-3-1) including the swivel bar (section 5-3-2) than has
previously been done. Results of the new mass distribution are discussed in section 5-3-3.

5-3-1 Torso Mass distribution

A closer study of the masses in Skippy’s torso (including the swivel bar, i.e. 3D Skippy)
allows us to analyse the possibilities of changing the mass distribution. Roughly, the mass

[iii]A robot is in fact unable to balance if it consists of only a single point mass. A physical understanding can
be enhanced by considering two extremities of impossible balancers. If a balancer would have all of its mass
concentrated at one point (such as at the far end) in the torso, a knee rotation would only cause the mass
to move radially with respect to the contact point (and thus vertically if the robot is in a balanced position).
If all mass is concentrated at the knee or anywhere in the leg instead, then a rotation of the (inertia-less)
torso would not accelerate any mass at all. In both cases, no mass is accelerated horizontally, whereas this is
required for balancing.
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of the torso is determined by two motors, a ball screw, a swivel bar, batteries, a structural
frame and a protective cover. Furthermore, the four-bar linkage has a significant mass due
to the various links and axles that have to transfer high forces. The mass of the four-bar
linkage is also modelled as part of the torso, because the linkage itself is not modelled. By
modelling the main parts of Skippy in SolidWorks, reasonable approximations can be obtained
about their mass and their location. The SolidWorks modelling, which has been an ongoing
project during the simulation studies, is not further treated in this thesis. Below follow some
considerations regarding mass distribution that came forth from this project, starting with the
motor housing mass (including motors) and constructional mass (including four-bar linkage,
frame and cover) in this section, and swivel bar mass in section 5-3-2.

torso
upper knee joint

protective cover

four-bar linkage motors swivel bar

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 5-5: Sketch of Skippy’s torso with an indication of part placement for determining mass
distribution.

Motor housing

The main motor, with a weight of 320 g for the RE35 or 240 g for the RE30, is attached to
the back of the motor housing. The axle of the motor housing is located at M = [0.32 0.05]
in Ψ6, see figure 3-5, approximately 0.32 m from the upper knee joint (the joint to which the
torso is connected). The horizontal distance x = 0.32 m in Ψ6 is also written as 0.32 u6,x,
where u6,x is a vector of unit length along the x axis in the frame Ψ6. This distance allows
for placement of the spring, lever and the longest spindle from Steinmeyer series 2412–M8
that we could possibly need. The CoM of the main motor and its housing is estimated at
0.4 u6,x. Moving the motor housing closer to the knee is possible with a shorter ball screw,
but the mass cannot be moved closer towards the knee than approximately halfway the torso,
which is undesired for increasing the torso’s RoG. Instead, the mass can be slightly pushed
further towards the tip of the torso to improve jumping performance. Note however that
various parts—of which mainly the swivel bar[iv]—are to be placed behind the motor. These
parts add to the length of Skippy’s torso, see figure 5-5. With the current motor placement,

[iv]The swivel bar is assumed to have a bent shape such that it can buckle during an unfortunate landing, for
which we reserve approximately 10 cm of torso length.
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it is expected that both tips of the swivel bar are approximately located at 0.6 u6,x
[v]. In this

scenario, the motor of the swivel bar is placed below the main motor, and cannot be moved
closer towards the knee. Moving the motor housing axle further towards the swivel bar likely
stretches the total length of the torso beyond 0.6 m, which is to be avoided unless absolutely
necessary for Skippy to be able to jump up to a height of 4 m. The mass of the two motors
including their housing is budgeted at 0.5 kg.

Constructional mass

The mass of the four-bar linkage itself, with all of its components and axles, is budgeted at
0.3 kg, located at the upper knee joint. The joints, drivelines and electronics are held together
with (aluminium) structural elements (also referred to as structural frame). Furthermore,
the entire torso is to be covered by foam or an other protective cover, with the purpose
of protecting the robot from crashes. The mass of structural elements, protective covers,
electronics, the main spring and the ball screw are initially modelled as an evenly distributed
mass between −0.1 u6,x and 0.5u6,x with a total mass of 0.6 kg. −0.1 m implies that some of
the mass overlaps the knee joint, corresponding to the protective cover. The amount of mass
that extends over the knee joint is likely overestimated, since it only includes the protective
cover (no structural elements). Nonetheless, it is expected that the protective cover is thicker
here, because the knee joint is a ‘corner’ in the robot’s morphology that is more vulnerable
and likely to receive more concentrated impacts than the ‘straight’ torso. Future engineering
studies ought to provide more accurate answers on the possibilities and requirements of mass
distribution of the cover and structural elements. The fact that we assume the distributed
mass to extend to no further than 0.5u6,x indicates that the mass does not extend all the way
to the end of the torso, which is related to the presence of the swivel bar that protrudes from
the torso at this point. The mass of the swivel bar is yet to be decided on, and the batteries
are yet to be placed. A closer analysis of swivel bar actuation is done in section 5-3-2.

5-3-2 Swivel actuation

The goal of this section is to analyse the effect of mass in the swivel bar, and to find an
acceptable mass for the swivel bar and its motor. The analysis is a result from analysing the
mass distribution of Skippy’s torso in section 5-3-1, in which the mass of the swivel bar is
integrated. The analysis also affects battery placement and swivel motor selection.

Swivel bar mass

The swivel bar has a non-negligible mass itself. To analyse swivel actuation, we consider a
simple out of the plane 2D swivel balance robot, consisting of a flywheel on a stick. This is
a simplification of Skippy where we view the frontal (coronal) plane rather than the sagittal
plane, featuring the flywheel as the swivel bar and the stick as the rest of Skippy (which
implies a locked ankle and knee joint). The system is depicted in figure 5-1b. This robot is a
special case of the acrobot, where c2,x = 0. The system’s dynamic response is only a function
of the torque on the swivel bar, which is important for balancing. The induced swivel bar

[v]Note that a torso length of 0.6 m is already slightly beyond the previous estimate of 0.55 m
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acceleration and thus velocity are lower if the swivel bar’s rotational inertia is higher. This
is confirmed by the velocity gain, which is positively correlated with the rotational inertia of
the swivel bar.

The velocity gain is no longer a function of the angle marked q2 in figure 5-1b, due to the
symmetry induced by c2,x = 0, and simplifies to the following expression[vi]:

Gω = − I2
I2 + m2 l21 + I1 + m1 c2

1
= − I2

Irobot
(5-3)

from which it is evident that a higher I2 increases Gω. I2 and Gω are even approximately
proportional (I2∼∝Gω) if the rotational inertia of the swivel bar is relatively low compared to
the rotational inertia of the entire robot about its contact point (toe) Irobot. The expression
furthermore implies that the velocity gain deteriorates if Skippy is stretched (directly related
to the increase of c1, L1 and I1), which is in conformance with observations of the velocity
gain in figure 5-2.

From the positive correlation between I2 and Gω, it follows that the required power for
controlling the swivel bar is lower if the swivel bar has a higher rotational inertia. The swivel
motor—whose size is related to the power it can deliver—can thus be smaller if the swivel
bar has a higher rotational inertia. As such, the swivel bar is ideally a long beam with two
point masses on both ends, maximizing its rotational inertia for its size and mass. Here we
find another trade-off. A light swivel bar requires a heavy motor and a light motor requires
a heavy swivel bar. Battery placement can possibly offer a solution.

Batteries

The 3× 3-cell battery packs weigh mbp = 0.10 kg per pack. The batteries are one of the few
parts that permit more freedom regarding their placement. They can be placed close to the
knee or close to the swivel bar. We found that a heavier swivel bar allows for a lighter swivel
motor. However, it is not desired to add additional ‘dead’ mass to the robot—mass that serves
no purpose other than to alter the mass distribution—since we want the robot to be as light
as possible. Instead, we can exploit the possibility of placing battery packs in the swivel bar.
The batteries would then be placed at both tips of the swivel bar, to maximize its rotational
inertia. If the swivel bar has a length of lsw = 0.5 m, the batteries add 1

2mbpl2sw ≈ 0.05 kg m2

rotational inertia to the swivel bar, allowing for the bar itself to be very light. One concern is
the wiring for the electricity that is drawn from the (rotating) batteries, for which we possibly
require a slip ring. Another concern is that we want the swivel bar to be able to ‘snap off’
or at least ‘snap through’ if a crash would otherwise cause it to break, which possibly causes
Skippy’s power supply to be dismantled. Controversially, a detachable swivel bar allows for
a possibly quick or hot-swappable battery replacement mechanism.

Swivel motor selection

To obtain an indication of the size of actuator we require for swivel balancing, we conduct
a small balancing experiment with the earlier described flywheel on a stick model, depicted

[vi]The expression of the velocity gain for any c2,x is very long and can be found in (Featherstone, 2012a)
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in figure 5-1b. Since this system is a special case of the acrobot, we only have to adjust
previously defined system parameters. Table 5-2 lists the new parameters. The first body
called ‘main’ represents all of Skippy, except for the rotational inertia of the swivel bar; the
parameters are an approximation of Skippy with a knee that is bent 90◦.

i joint body mi [kg] Ii [kg m2] ci,x [m] li = ri+1,x [m]

swivel Skippy
{

1 toe main 2 m1 0.232 0.63 0.78
2 swivel joint swivel bar 0 2 mbp 0.252 0 —

Table 5-2: Skippy in the swivel plane.

In contrast to the torso of the ‘bend’ balancers, the swivel bar is permitted an indefinite range
of rotation. The symmetry of the system furthermore allows it to act more slowly, for which
we lower the pole of Featherstone’s controller to p = 2 to lower the required power input. It
also implies that the velocity gain can be much lower than those of bend Skippy in figure 5-2.
Moreover, the swivel bar is not required to reach a final position for q2. As such, we set
the positional gain k4 in equation (5-2) to zero, such that the controller’s task is not divided
between tracking a configuration and maintaining balance, but only focussed on the latter.

We run the balancing experiment described in section 5-2-3—where Skippy has to recover
from a 5◦ balancing offset—with parameters listed in table 5-2 and mbp = 0.1 kg, and without
electrical saturation. We observe peak powers of 40 W, a maximum swivel velocity of q̇2 ≈
35 rad s−1 and a maximum swivel torque of τ2 ≈ 2.5 rad s−1. A light 24 V motor that fits this
profile is the Maxon DSX22S 15 W 24 V motor, with a weight of a mere 66 g. At 30 V, the
motor has a peak power of Pmech = 61 W, a stall torque τs = 0.15 N m and no-load velocity
ωz = 1623 rad s−1. The torque and velocity range require a relatively small transmission ratio,
for which we install a miniature harmonic drive with transmission R123 = 30 and efficiency
η = 0.70. The resulting rotor’s reflected rotational inertia was found to be negligible due
to the low rotor inertia and low transmission ratio. The resulting peak power, stall torque
and no-load velocity are Pmech ≈ 43 W, τs ≈ 3.2 N m and ωz = 54 rad s−1 respectively, which
should be sufficient for balancing with the swivel bar.
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Figure 5-6: Balancing results of balancing in the swivel plane for various battery masses mbp

attached to the swivel bar. Balance performance deteriorates for lower values of mbp.

We run the same balancing experiment, including electrical saturation. Results are plotted
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in figure 5-6 for three values of mbp ∈ {0.06 0.08 0.1}kg. The corresponding velocity gains
are Gω ∈ {0.0085 0.0113 0.0141} respectively, which are notably lower than the velocity
gains in figure 5-2. We observe that Skippy is able to recover balance without any voltage
saturation for mbp = 0.1 kg. For mbp = 0.08 kg, balancing is, as expected, more difficult and
for mbp = 0.06 kg, Skippy is unable to recover balance and hits the ground at t = 1.8 s.

It is anticipated that we do not have to add additional weight to the swivel bar, as it performs
well with the two battery packs and a sufficiently light motor that fits our mass budget.

5-3-3 Results

This section discusses results of a new conceptual mass distribution of Skippy’s torso, as de-
fined by sections 5-3-1 and 5-3-2. New torso parameters are presented, including a discussion
of their effect on the balancing and jumping performance.

Most of the torso’s mass is assigned to particular parts of the torso, including the mass
of two battery packs. The study concludes that there is little freedom to choose the mass
distribution. After re-analysing Skippy’s jumping performance, it was decided to place also
the third battery pack towards the swivel bar (close to the motors), the tip of the torso.
The estimated CoM of the motors and third battery pack is 0.45 u6,x. Skippy’s jumping
performance has slightly deteriorated as a result of the new mass distribution. The mass of
the swivel bar including its driveline, protective parts and two battery packs is estimated at
a total 0.3 kg at 0.6 u6,x. The new torso mass and inertia is then determined by the following
final mass distribution:
description type mass [kg] x in Ψ6
four-bar linkage point 0.3 0
motors & housing point 0.6 0.45
swivel bar point 0.3 0.6
frame & cover distributed 0.6 −0.1 to 0.5

This mass distribution is graphically illustrated by figure 5-5. The corresponding RoG and
location of the CoM are rg = 0.22 m and r6,x = 0.32 m. Compared to the previous values (rg =
0.17 m and r6,x = 0.38 m), the increased RoG is expected to improve balancing performance,
but the reduced value of r6,x is expected to worsen jumping performance.

The new velocity gain is plotted in figure 5-7. It shows that, for an extended knee joint,
Skippy’s velocity gain has nearly doubled, which suggests a major improvement to Skippy’s
balancing performance. In addition, simulations confirm the improved balancing performance.
Identical simulations to those conducted in section 5-2-3 are conducted, where we compare
both results of Skippy for both 30 V and 18 V. New and old balancing results are plotted in
figure 5-8. Skippy no longer hits itself or the ground.

Rerunning the jumping simulations described in section 4-6-2 confirms Skippy’s reduced jump-
ing performance, which now jumps to a height of 3.73 m, approximately 10% less than pre-
viously. The effectively shorter torso (lower value of r6,x) and increased RoG causes less
vertical kinetic energy build-up. Firstly, the launch phase is slightly shorter due to the low-
ered value r6,x, which reduces the maximum amount of work that can be delivered by the
motor. Secondly, build-up of energy is less efficient since more energy is stored as rotational
energy, which is due to the effectively shorter torso and increased RoG. More rotational and
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horizontal momentum is built-up, which is in line with the predictions in appendix A, where
it was predicted that a longer leg (which is effectively equivalent to a shorter torso) and a
higher RoG build up more horizontal and rotational momentum. By changing the initial
conditions of joint positions (e.g. setting the initial CoM offset to φ0 = π/2 + 0.3 instead of
φ0 = π/2 + 0.2 rad), small improvements to the jumping performance can already be made
that lead to a jumping height of approximately 3.83 m. Further improvements could be made
by increasing the torso length, but this is advised against due to the limited mass budget.
Instead, it is advised to look into the landing phase, which is possibly able to improve jumping
performance, as further described in chapter 6.
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Figure 5-7: Skippy’s new mass distribution improves the velocity gain and thus balancing per-
formance.
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Figure 5-8: Skippy’s new mass distribution improves balancing performance.

Concluding remarks

This chapter addresses the required additional ability of balancing. Balancing is an action
that differs much from jumping, which is reflected by desired mechanical system requirements
that are different from those required for hopping. Even though not focussed on controller
design, we have been able to make sound predictions about Skippy’s balancing performance
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through a measure called the velocity gain, and verifications of those predictions have been
done with a simple controller. The balancing performance is hugely affected by dimensional
and inertial properties of the various bodies. A closer analysis concerning mass distribution in
Skippy is done consequently, which resulted in a mass distribution that improves the balancing
performance and—expectedly—slightly deteriorates jumping performance. According to the
velocity gain, which has doubled for the worst balancing positions, Skippy’s new balancing
performance is much improved. However, Skippy jumps approximately 10% less high. The
results stress the general importance of taking required additional abilities at an early stage
of the iterative design process into consideration for design criteria, as they can demand
mechanical adjustments that worsen the jumping performance.

J.J.M. Driessen Master of Science Thesis



Chapter 6

Discussion

The goal is to design an action strategy and mechanism for Skippy to hop up to 4 m that
is compliant with Skippy’s required additional abilities and physical limitations. This thesis
presents an iterative study of machine and behaviour co-design towards this objective. The
various chapters in this thesis show how step-by-step progression is made with this approach.
Every chapter looks into limited aspects of Skippy. The scope of the possibilities is initially
reduced by thorough reasoning and careful decisions to obtain a simple robot model (i.e.
the 2D robot model defined in chapter 2). The action strategy and mechanism are then
expanded on (e.g. by introducing an elastic driveline with a non-linear spring) and new
restrictions and requirements are introduced that shrink the set of solutions (e.g. modelling
driveline limitations).

The above described iterative approach is proven effective, as it led to the design of a realistic
strategy and mechanism able to make powerful hops towards the desired height in a controlled
way, for which we exploited the possibilities of combining the design of the mechanical system
and the action strategy (e.g. adjusting dimensional and stiffness properties to allow maximum
possible power delivery by the motor). The iterative approach helps to keep the model
sufficiently simple and thus the scope of possibilities comprehensible, which translates to
keeping the number of tunable parameters manageable. An example of model simplification is
the initial neglect of the linear and elastic driveline kinetics, or the simplification of considering
only 2D systems.

The pitfall of iterative design methods is that its many design steps are governed by early and
many decisive stages. Already in the very beginning of the project, many decisions are to be
made to obtain a feasible research scope, even for a robot as simple as Skippy. These decisions
include those related to the mechanical design and action strategy, such as the morphology
and type of actuation, but also the model simplifications, such as the decision of using joints
that are geared 1:1 instead of a full four-bar linkage. In some cases, the decisions taken are
not right and lead to a dead end, in which case it is necessary to do backtracking and to
re-evaluate previous decisions. With the benefit of hindsight, a better decision can be made.
For example, we have experienced a dead end in section 3-2-3 where an inverse dynamics
approach was pursued to find an action strategy. This approach resulted in an aggressive
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action strategy that violated driveline limitations. From hindsight was learnt to base the
action strategy on these driveline limitations instead of violating the driveline limitations as
a result of the analysis.
In using the iterative approach, we have been able to make substantial progress with Skippy.
Future research is to further improve the degree to which the model is realistic, but it is
advised to keep the scope of solutions comprehensible. That is, the introduction of objectives,
limitations and tunable model properties should be balanced. A selection of topics that are
of interest for future research are presented below, as they build directly on assumptions and
limitations of the current research.

• required additional abilities It is confirmed that balancing and jumping are two
conflicting requirements. Other required additional abilities have yet to be analysed,
as they could also require changes of mechanical system properties—such as mass dis-
tribution and spring stiffness—that can improve or worsen the thrusting or steering
performance. These actions include landing, in-flight control, small hops and standing
up. The landing phase, which is similar to the launch phase, is possibly able to improve
the jumping performance. One of the (pessimistic) assumptions made in the thesis is the
initial thrust force of Fy = 200 N, which followed from an approximation of the desired
average thrust force made in section 2-1-2. This force has a significant influence on the
system behaviour, partly because the spring profile depends on it, see equation (4-17).
While the assumption is not a bad one, a better estimation can be made by considering
also the landing phase.
• 3D Skippy This thesis has focussed only on 2D models, where out-of-plane forces are

assumed to be opposed by constraint forces that keep Skippy in its 2D vertical plane.
Whereas this is a valid assumption for initial thrust and balancing analyses, future
research will have to extend to 3D modelling. It has been shown that a robot with
a similar morphology as Skippy is able to follow controlled trajectories in 3D (Azad,
2014), but no hopping strategy has yet been developed that is able to control both lift-off
momenta in the bend and swivel plane. Some additional abilities, e.g. in-flight control,
are largely determined by 3D effects such as the non-integrability of 3D rotations.
• sensors and real-time control This thesis has focussed little on controllers and

sensors and has not considered a real-time system, including a discrete system rep-
resentation, various types of delays, measurement errors and state estimation errors.
The stance phase is very short, which implies that the controller has to act very fast.
Nonetheless, the action strategy during most of the stance phase is relatively simple, as it
is determined by (feedforward) voltage saturation. Slightly more difficult to implement
is nut velocity saturation, as the nut velocity is limited by a simple feedback control
law (i.e. a sliding P-controller). It is expected that the beginning of the landing phase
and end of the steering phase are most challenging to control, where the controllers are
to prevent Skippy from slipping. With the incredibly short time available shortly after
landing and shortly before lift-off, it may be required to make the anti-slip controllers
as simple as look-up tables that are generated from for instance reinforcement learning.
• spring design The spring profiles that are used in the thesis are not based on real

components and materials. Designing a main spring that (1) fits the regressive spring
profile, (2) is extremely light and (3) has little damping is a challenging task. Two
out of many options are suggested. The first is a tension spring made from rubber,
as rubber has a high gravimetric energy density and a regressive stress-strain profile.
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However, its viscous properties may be troublesome. The second option is a glass fibre
buckling spring with linear guide, which is heavier than a rubber spring, but still lighter
than known alternatives. A friction model of the spring will have to be included in
the simulations as they will negatively influence Skippy’s jumping performance. Several
other mechanical challenges are to be tackled, which are all related to the requirement
of minimizing weight (e.g. the protective cover and the four-bar linkage).
• multi-objective optimization With the various conflicting objectives that Skippy

has, it is advised to do a multi-objective optimization (also known as Pareto opti-
mization)—which allows optimization of multiple objective functions simultaneously—
to make decisions about final design parameters, which include the dimensions of the
final four-bar mechanism and the stiffness of realistic spring profiles. The optimization
can improve the current jump height, which is slightly below 4 m, without having to
further increase Skippy’s size. Moreover, the four-bar linkage allows for more transmis-
sion ratios due to its many dimensional parameters, which can be optimized to further
improve the steering capabilities.

The above list with the many topics for future research—which is not complete—shows that
the research that is performed and described in this thesis marks only the starting point of
the design project of Skippy. Nevertheless, the results show that there is realistic potential
for the realisation of such a hopping machine.
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Chapter 7

Conclusion

This thesis makes the first steps towards the realisation of a robot, named Skippy, with unique
athletic abilities. The robot is to be able to jump up to heights of 4 m, do acrobatic manoeu-
vres (including somersaults), balance, stand-up and survive its crashes—yet, it is maximally
simple in having only two actuators. The focus is on the most difficult task of Skippy, which
addresses the mechanical design and the pertinent action strategy for jumping up to a height
of 4 m in a controlled way. The problem demands a complete understanding of the mechan-
ical system behaviour, because the requirements of Skippy aim to achieve performance that
is on the edge of what is physically possible with COTS components—and as such cannot be
achieved by relying solely on either an action strategy or a mechanical system.

By considering both the action strategy and the mechanical system, we open up new dimen-
sions of possibilities. However, the large number of possibilities could also lead to loss of
overview and understanding. As such, it is decided to do an iterative design study of machine
(mechanical system) and behaviour (action strategy) co-design, where little steps are taken
forward, during which we preserve our understanding of the system behaviour, its possibilities
and its limitations. Withal, a detailed design approach is made feasible owing to the simplic-
ity of Skippy. Initially, simplifications are made where possible and only those aspects that
are most crucial are taken into consideration. For this reason, Skippy’s system is simplified
to be planar in this thesis, for which Skippy only uses one instead of two actuators.

Initial studies on Skippy are coarse in that they consist of only single-dimensional calculations
about energy flow, system dimensions and feasible components. Nonetheless, they lead to very
carefully taken design decisions that severely reduce the scope of the project to one that can
be built on. These studies deduce a mechanism that realizes passive leg elongation through
the introduction of an ankle with spring. The mechanism practically decouples Skippy’s
launch towards 4 m into a thrust phase and steering phase, which respectively address the
power input and controllability. The thrust phase requires a series elastic actuation for energy
storage, which is connected to a driveline that consists of a ball screw and a four-bar linkage
for desired motion transfer characteristics. The steering phase requires a passive ankle that
allows for leg elongation shortly before lift-off, which improves the controllability of lift-off
momenta. However, the required thrust profile—even if smoothed—that is to be delivered to
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the mechanism by the motor through the series elastic driveline is difficult to find through
inverse dynamics.

Instead of finding an action strategy through inverse dynamics, the thesis devises a feedfor-
ward action strategy that considers various system limitations that are taken into account
by dynamic saturations. These limitations include the limited nut velocity of the ball screw
(which is part of the transmission) and maximum armature voltage. Both the thrust and
steering strategy consist of a simple torque command that is dominated by these dynamic
saturations and therefore allow for achieving that which is on the edge of what is physically
possible. Thrust is mainly limited by maximum voltage and steering by nut velocity. The
strategy also allows for a better understanding of system behaviour, which has led to adjust-
ments of system parameters that result in maximum power input, efficient energy conversion
and acceptable steering capabilities. These parameters include stiffness of non-linear spring
profiles and dimensional properties that affect the variable transmission ratio. An interesting
lesson is learnt here. Instead of pursuing an approach where Skippy is forced to act in a
particular way, we consider what happens if the robot is acting at its physical limits (i.e.,
in saturation), after which it is tried to move the physical limits by redesigning the physical
system, to improve the behaviour. This illustrates the importance of combining the physical
design and the system behaviour (i.e. action strategy) if one is aiming for high performance.

It has been shown that required additional abilities should also be taken into consideration
for decisions in an early stage of the iterative design project. This has been done by analysing
one such ability: Skippy’s physical ability to balance. Desired system properties for balancing
counter those of thrusting, which complicate design decisions. With the newly defined system
characteristics that put more favour to balancing, Skippy’s jumping height reduces slightly
below 4 m, whereas it jumped over 4 m prior to the balancing analysis.

For the final design of Skippy, all required additional abilities have to be taken into account
and performance trade-offs have to be made. Once all capabilities and limitations of Skippy
and its parameters are quantified, a multi-objective optimization can be done that aids in
trade-offs for final design decisions, which is likely able to improve the current jump height.
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Appendix A

Quasi-static momentum analysis

In order for Skippy to jump high, positive vertical momentum has to be built up. However, we
also have to control for the horizontal and angular momentum of the robot in order to jump
in a desired fashion. It is explained in section 2-1-4 that it is expected that Skippy will build
up positive horizontal and angular momentum during the thrust phase. This section contains
a quasi-static analysis that aims to provide more evidence and insight towards build-up of
angular momentum during the thrust of a simplified model of Skippy.

(c, 0)
y

x

r

(x, y)

Figure A-1: Sketch of a simple hop robot with the global coordinate frame at the ‘bend’ joint
and a massless leg.

Consider a very simple model of planar Skippy, depicted in figure A-1. The coordinate frame
is fixed in the actuated revolute bend joint, oriented such that the x-axis passes through
the CoM of the torso. The CoM of the torso is located at a unit distance c = 1 from the
coordinate frame with radius of gyration (RoG) of r. The leg is massless and connects to
the ground via a passive revolute joint which we call the foot, located at (x, y). Gravity
is not modelled, on the grounds that the desired thrust acceleration is much greater than
gravitational acceleration. For a non-zero thrust torque τ at the bend joint (0, 0), it can be
derived that the angle of the GRF αF (x, y) at the foot can be calculated as follows, neglecting
the convective accelerations:
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αF = arctan
(
r2x + y2, y

(
x− 1− r2

))
(A-1)

Note that the direction of the GRF is invariant with the magnitude of the torque, the mass
of the torso and the uniform scaling of all lengths (c, r and the leg length

√
x2 + y2). This

justifies the assumption c = 1. The direction of the GRF according to equation (A-1) is
plotted in figure A-2 for r = 0.5 and r = 1. The set of foot positions in which the thrust
torque causes the torso to rotate about the origin is marked by a dashed line. If the foot is
on this line then the leg acceleration is zero. The gray area marks the set of foot positions
that cause a negative moment about the CoM. The edge of this area—which is a half-circle
between the bend joint and the CoM (not a function of the RoG)—marks the set of foot
positions in which the GRF points through the CoM. All foot positions outside this area
(white) cause the thrust torque to deliver a positive moment about the CoM.
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Figure A-2: The direction of the GRF as function of the foot position (x, y) for two different
RoGs r, denoted by the dash dotted line. The dashed

From the figures it is evident that almost all foot positions cause a positive moment about
the CoM. During the launch phase, the foot moves from a flexed to stretched orientation
over a circle about the origin; positive angular momentum is built up towards the end of
the launch phase as a result of integrating the positive moment over time. This implies that
Skippy would be bound to do somersaults in order to be able to land, which is undesired.
The rotational energy in Skippy can never be utilized to jump higher.

Furthermore, note how the lines of action of GRF’s pass further to the right of the CoM in
figure A-2b. It can be observed and devised that a greater radius of gyration of the upper body
leads to more momentum build-up. Moreover, longer legs generally lead to more momentum
build-up.

Several options can be exploited to obtain different lift-off momenta.

• Change the leg length. Shorter legs build up less angular momentum. However, shorter
legs impair the ability to jump high, unless we add the length to the torso, which in
turn would increase its radius of gyration and thus the positive momentum build up.
Exchanging leg length for torso length moreover means that Skippy becomes heavier,
because the torso contains more structural elements than the leg. As a further matter,
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if the leg is to build negative momentum by partially swinging through the grey area in
figure A-2, then it has to be significantly shorter than c. A leg shorter than c does not
allow Skippy to balance in very crouched configurations and is thus to be avoided.
• Change the initial conditions of the launch phase. An initial angular offset of the CoM

with respect to the balanced configuration will introduce a counter-moment due to
the gravity component, which has been neglected in this analysis. Secondly, the initial
angular momentum can be changed by assuming a non-zero initial angular velocity. This
option is certainly to be exploited, but changing initial conditions does not improve the
controllability or robustness. If a set of (unfortunate) initial conditions is given, then
little can be done to tweak the outcome.
• Alter the thrust torque profile. As the moment arm of the GRF varies with foot position,

it is possible to vary the cumulative total angular momentum by varying the thrust
torque as a function of leg angle. This would still not allow Skippy to perform a
non-rotating hop, because the angular momentum would always be positive; it would
at least allow Skippy to perform only controlled somersaults. A disadvantage is that
changing the thrust torque profile limits the possibilities to build up a lot of vertical
momentum.
• Lower the average thrust torque, which extends the duration of the launch phase, to

increase the influence of gravity that acts on the model. Note that lowering the thrust
torque does not change the direction of the GRF (and thus momentum build-up) ac-
cording to equation (A-1); however, in reality, gravity acts on the model which also
influences momentum build up. An extended launch phase allows for gravity to build
up more (or less, depending on the direction in which the robot is falling) angular mo-
mentum. Nonetheless, an undesired side-effect of extending the duration of the launch
phase (without extending the length of the stroke) is less build-up of vertical momentum.
Ideally, the launch phase maximizes build-up of vertical momentum.

A more practical solution was found for Skippy, which splits the launch phase into a thrust and
steering phase. The thrust phase focusses only on thrusting (building up vertical momentum)
and the steering phase only on steering (correcting for build-up of horizontal and angular
momentum). A leg was introduced able to change its length through a passive ankle joint.
The ankle prolongs ground contact by decompression at the end of the thrust phase. This
decompression can be used for steering, where momentum is brought to a desired value.
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Appendix B

Hybrid dynamics and loop closure

This attachment describes how the equations of motion (EoM) of Skippy are formulated to
solve Skippy’s dynamics, which incorporates so-called hybrid dynamics (Featherstone, 2008b)
and kinematic loop closure functions (Featherstone, 2008a).

The EoM of an open-loop rigid-body system can be written in the following canonical form:

τ = H(q)q̈ + C(q, q̇) (B-1)

H is a joint-space inertia matrix and C a joint-space vector of force terms, including Coriolis
and centrifugal forces and gravity. Efficient algorithms are available to calculate H and C.
Forward dynamics FD or inverse dynamics ID calculations can be done to calculate the joint
accelerations q̈ or forces τ , respectively, given the other variables in equation (B-1) as known:

q̈ = FD(q, q̇, τ )
τ = ID(q, q̇, q̈)

Generally, FD is used to calculate unknown joint accelerations. However, Skippy’s system
has two difficulties:

• q̈1 and q̈2 are already known (they are zero, fixing the foot to the ground) and their
forces (reaction forces τ1 = Fx and τ2 = Fy) are unknown. So we reformulate the EoM
in the form of a hybrid dynamics equation that takes τ1, τ2 and q̈3 to q̈6 as unknowns.
Hybrid dynamics combines FD and ID.
• Skippy’s joint variables are not all independent, because of the loop-closure constraints.

To obtain correct joint acceleration variables, we require a mapping from independent
to dependent joint accelerations.

Let us define the following subscripts to distinguish between terms corresponding to known
(1) and unknown (2) joint accelerations:

q̈1 known, τ1 unknown:
q̈2 unknown, τ2 known:

[
τ1
τ2

]
=
[

H11 H21
H12 H22

] [
q̈1
q̈2

]
+
[

C1
C2

]
(B-2)
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We furthermore define y as a vector of independent position variables that define q uniquely,
such that we can write the EoM in equations (B-1) and (B-2) as

τy = Hy(y)ÿ + Cy(y, ẏ) (B-3)
⇒

ÿ1 known, τy,1 unknown:
ÿ2 unknown, τy,2 known:

[
τy,1
τy,2

]
=
[

Hy,11 Hy,21
Hy,12 Hy,22

] [
ÿ1
ÿ2

]
+
[

Cy,1
Cy,2

]
(B-4)

Equation (B-4) can be simplified for the case of Skippy. For Skippy, the only dependency
occurs in q2. q̈1 is a 2 × 1 vector of independent (known, zero) joint accelerations and τ1
corresponds to the (unknown) GRFs. So we have:

ÿ1 =
[

ÿ1
ÿ2

]
= q̈1 =

[
q̈1
q̈2

]
=
[

0
0

]
(B-5)

τy,1 = τ1

This allows us to rewrite equation (B-4):[
τ1

τy,2

]
=
[

Hy,21 ÿ2
Hy,22 ÿ2

]
+
[

Cy,1
Cy,2

]
(B-6)

To calculate q from y, we define the loop closure function γ(y), i.e. q = γ(y). The joint
velocities q̇ and accelerations q̈ are found by differentiating the loop closure function:

q̇ = Gẏ (B-7)
q̈ = Gÿ + g (B-8)

with the velocity mapping or Jacobian G

G = ∂γ

∂y
(B-9)

and the convective acceleration vector g

g = Ġẏ (B-10)

Note that it follows from y1 = q1 that G is block-diagonal and that G11 is an (2×2) identity
matrix :

G =
[
G11 0

0 G22

]
with G11 =

[
1 0
0 1

]
(B-11)

This allows us to calculate Hy, Cy and τy as follows:

Hy(y) = GTH(q)G
Cy(y, ẏ) = GT (C(q, q̇) + H(q) g)

τy = GTτ =
[

τ1
GT

22τ2

]
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which we can use to calculate our unknown independent joint accelerations ÿ2 as follows:

ÿ2 = Hy,22(y)−1 (τy −Cy,2(y, ẏ))

Having ÿ2, the dependent joint accelerations in q̈ can be calculated using equation (B-8) and
the independent joint torques τ1 can be found accordingly

τ1 = Hy,21(y)ÿ2 + Cy,1(y, ẏ)
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Appendix C

Energy flows

With an increasing level of model complexity, the model becomes more prone to mistakes and
the comprehensibility deteriorates. We compute and compare all the energy flows in Skippy
with the following purposes:

• Providing a check to verify that our model is not incorrect, by summing energies and
work done on and by the system. We refer to this study as the energy audit.
• Improving our understanding of the system, by observing the various energy levels

throughout time, which could possibly tell us what to focus on to further improve the
performance of Skippy.

This appendix focusses on the energy audit and expressions of all energies involved. For the
energy audit we should have that the sum of all system energies plus work done by the system
Wout (heat generation) minus work done on the system Win (by the motor) remains constant
throughout time:

d (Esys + Wout −Win)
dt

= 0 (C-1)

in which Esys is the sum of all internal system energies, Wout is the work done by the system
and Win the work done on the system. The energy defined by the sum of these variables
should be constant.

The system

It is important to define the system to properly distinguish between Esys, Wout and Win.
The system, denoted sys, consists of all the moving bodies, the springs, the ‘disembodied’
rotational inertia representing the out-of-plane rotational inertia of the motor’s rotor, coupling
and ball screw spindle, and the motor’s electrical armature. Heat developed in bodies or the
armature circuit is not included in the system, because it is considered ‘lost’ or ‘useless’
energy, and as such is classified as work done by the system Wout. The only source of work
done on the system Win is electrical energy that is fed to the armature circuit. Heat loss in
other electric circuits (e.g. motor driver electronics), or heat loss as a result of conversion
from chemical to electrical energy in the batteries, is not considered.
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System energies

The system energy consists of all kinetic energies Ek and potential energies Ep:

Esys = Ek + Ep = (Ek,x + Ek,y + Ek,φ + Ek,h) + (Ep,m + Ep,a + Ep,g)

Ek,x = 1
2mẋ2 horizontal translational kinetic energy of the CoM

Ek,y = 1
2mẏ2 vertical translational kinetic energy of the CoM

Ek,φ = 1
2 q̇TH(q)q̇ − Ek,x − Ek,y rotational kinetic energy

Ek,h = 1
2Ihφ̇2

h rotational driveline energy

Ep,m =
∫

lz
fs(xs) dxs main spring energy

Ep,a =
∫

0
fτ4(q4) dq4 ankle spring energy

Ep,g = m g y gravitational energy

H(q) is the joint-space inertia matrix, see Appendix B. m and [x y] are the system’s total
mass and coordinates of its CoM respectively.

Ek,xy = Ek,x + Ek,y is the sum of all translational kinetic energy of all bodies in the system.
Translational kinetic energy is the most interesting value for Skippy as it is a measure for
jumping performance and speed, which is why it is taken apart from other kinetic energies.
The rotational kinetic energy in the driveline Ek,h is the sum of kinetic energy of rotating
parts in the driveline, which includes the motor rotor, spindle and coupling. The total kinetic
energy Ek minus Ek,h equals the total kinetic energy of all bodies Eb = 1

2 q̇TH(q)q̇. Eφ is
the total kinetic energy of all bodies minus the translational kinetic energy.

All system energies are calculated analytically, including the spring potential energies Ep,m

and Ep,a, as their profiles are readily available.

Work done on the system

The electrical work Wel done on the system equals

Win = Wel =
∫

0
Pel =

∫
0

min (0, UI) dt (C-2)

This equation implies that the electrical power flow is always positive or zero. It is consistent
with the assumption that the motor driver electronics is non-regenerative. The motor cannot
work as a dynamo, which implies that if the motor is doing negative work, then this work
is lost as heat rather than being fed back into the battery. Resulting heat generation is
considered as work done by the system instead, which is explained subsequently.
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Work done by the system

Skippy has various sources of heat generation. Most heat generation results from resistor
losses WJ in the motor armature circuit. The total heat losses are

Wout = WJ + WT + Wreg + Wbs

WJ =
∫

0
J2R dt motor winding resistance heat

WT =
∫

0

∣∣∣φ̇h

∣∣∣ Jz cT dt motor friction torque heat

Wreg =
∫

0
max (0, UI) dt regenerative heat

Wbs =
∫

0
|Ffric ẋn| dt ball screw heat

The largest source of heat generation is WJ . The heat that occurs from the friction torque in
the motor WT is very small and in most cases negligible. Motor heat WJT is defined as the
sum of WJ and WT . Wreg is an additional source of heat generation that occurs if the motor
is doing negative work (i.e. ẆM < 0), which results from the previously stated assumption
that the motor driver electronics is non-regenerative. Idiomatically, we refer to this heat as
regenerative heat. Note that Wreg remains constant if the motor is delivering positive work.

The only source of modelled heat generation that does not occur in the motor or its electric
circuit is heat generation in the ball screw Wbs. The springs are modelled to be purely elastic
and do not generate heat in this model. The fact that real springs cannot be purely elastic
has been taken into account in the design constraint that only 50% of the necessary energy
to perform a 4 m hop can be retrieved from the previous hop, to be stored as potential energy
in the spring (see section 2-1-5).

Energy audit

The energy audit defined in equation (C-1) confirms that energy is preserved. Note that all
types of work done by the system are positive and monotonically increasing, since heat is
considered permanently lost. Also work done on the system is positive and monotonically
increasing, due to the nature of its (non-regenerative) definition in equation (C-2). System
energies are positive but not necessarily monotonically increasing. If Esys is decreasing, it
implies that more heat is generated than electrical energy fed to the system.

We make a cumulative plot of all energies Esys and work done by the system Wout minus work
done on the system Win as a function of time to verify that it remains constant throughout
time. Note however that −Win is negative. For the cumulative plot it is desired that all
quantities be positive. As such, we plot W−in = max (Win)−Win instead of −Win. max (Win)
can be seen as a reservoir of energy that is being depleted during one particular simulation.
As an example, the cumulative plot that corresponds to the data analysed in section 4-5-4 is
displayed in figure C-1. We confirm that it is constant throughout time, for which it passes
the energy audit. All other simulations mentioned in the main matter also pass the energy
audit.
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Figure C-1: The energy audit confirms preservation of energy.

Subsystems

Work done by the motor WM is defined as mechanical work done by the motor Wmech plus
motor friction torque heat WT and motor winding resistance heat WJ in the motor’s armature.

WM = Wmech + WT + WJ

Note that the energy flow of mechanical work done by the motor Wmech is neither included in
Wout nor in Win, as it is a flow within the system, not an incoming or outgoing flow. Yet, we
are able to compute it by integrating the mechanical power that is delivered by the motor:

Wmech =
∫

0
Tmech φ̇h dt (C-3)

This quantity can be used for additional verifications, for which we divide our system in two
subsystems. We define sys, k as the system excluding the motor (and its armature) with

Esys,k = Esys

Wout,k = Wbs

Win,k = Wmech

Congruently, we can define a subsystem that considers only the motor and its armature,
sys, e:

Esys,e = 0
Wout,e = Wmech + WJ + WT + Wreg

Win,e = Wel

Both systems confirm energy preservation. Figure C-2 plots the energy audit of sys, e cor-
responding to the same data analysed in figure C-1. WJ and WT are plotted separately to
show how tiny WT is.
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Note

The energy audit plots can be confusing or difficult to read, as they contain the cumulative
results of all system energies and work done by the system minus work done on the system.
The plots are generated for the purpose of the energy audit, which is a valuable check for the
correctness of simulations. Easier readable energy plots are used in the main matter of the
thesis, which do not indicate energy preservation. In these plots, cumulative system energies
are plotted above zero, cumulative work done by the system is plotted below zero and work
done on the system is not plotted.
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W−in energy reservoir
WT friction torque heat
WJ resistor heat
Wreg regenerative heat
Wmech mechanical work motor

Figure C-2: The energy audit of the motor confirms preservation of energy. It can also be seen
that the heat development WT as a result from the friction torque is very small.
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Glossary

List of Acronyms

CoM centre of mass

COTS commercial off-the-shelf

DoF degree of freedom

emf electromotive force

EoM equations of motion

FD forward dynamics

GRF ground reaction force

ID inverse dynamics

IIT Istituto Italiano di Tecnologia

RoG radius of gyration

RoM range of motion

SEA series elastic actuation

TU Delft Delft University of Technology
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